《机器学习预测复杂新材料合成》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-12-24
  • 据22日发表在《科学进展》杂志上的一项研究,美国西北大学和丰田研究所研究人员已成功应用机器学习来指导新纳米材料的合成,消除与材料发现相关的障碍。这种训练有素的算法,可通过定义数据集来准确预测可用于清洁能源、化学和汽车行业燃料的重要催化剂。

      论文通讯作者、美国西北大学纳米技术专家查得·米尔金此次发明的数据生成工具 “巨库”极大地扩展了研究人员的视野。每个“巨库”都包含数百万甚至数十亿个纳米结构,每个纳米结构的形状、结构和成分都略有不同,所有这些都在2×2平方厘米的芯片上进行了位置编码。迄今为止,每个芯片包含的新无机材料比科学家收集和分类的还要多。

      研究团队通过使用聚合物笔光刻技术开发了“巨库”,这是一种大规模并行纳米光刻工具,能够每秒对数十万个特征进行特定位置的沉积。

      在绘制人类基因组图谱时,科学家的任务是识别四种碱基的组合。但“材料基因组”包括元素周期表中任何可用元素的纳米粒子组合,以及形状、大小、相形态、晶体结构等参数。以“巨库”的形式构建更小的纳米粒子子集,将使研究人员更接近完成材料基因组的完整图谱。

      米尔金说,即使是类似于材料基因组的东西,确定如何使用或标记它们,也需要不同的工具。机器学习应用程序非常适合解决定义和挖掘材料基因组的复杂性,但却受限于创建数据集以在空间中训练算法的能力。“巨库”与机器学习的结合可能最终会解决这个问题,从而了解哪些参数会驱动某些材料特性。

      在该项研究中,米尔金团队编译了先前生成的由具有复杂成分、结构、尺寸和形态的纳米粒子组成的“巨库”结构数据。他们使用这些数据来训练模型,并要求它预测会产生某种结构特征的四个、五个和六个元素的组成。在19次预测中,机器学习模型正确预测了18次新材料,准确率约为95%。

      该模型在西北大学建立的大型数据集上,以寻找具有围绕相位、尺寸和其他结构特征设置参数的多金属纳米粒子,而这些参数会改变纳米粒子的特性和功能。

      研究人员表示,该技术或能推动对未来至关重要的许多领域中的发现,包括塑料升级回收、太阳能电池、超导体和量子比特。该团队现在正在使用这种方法寻找对清洁能源、汽车和化工行业的燃料过程至关重要的催化剂。确定新的绿色催化剂将使废物和大量原料转化为有用物质促进氢气产生、二氧化碳利用和燃料电池的开发。

相关报告
  • 《机器学习模型为预测材料属性和结构助力》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-11
    • Robert Rudd,Timofey Frolov和Amit Samanta三人站在模拟C2H4分子的拓扑原子的模型前面,该模型由分子中的原子量子论(QTAIM)定义并通过TopoMS计算得到,每种颜色代表一个原子。来源:劳伦斯利弗莫尔国家实验室 利用机器学习,演化算法和其他先进的计算技术,劳伦斯利弗莫尔国家实验室(LLNL)的研究人员成功地模拟了构成大多数材料的晶体之间的原子排列方式,这一发展可能对未来材料的设计和优化方式产生影响。 尽管大多数材料在肉眼看来可能是均匀的固体,但它们实际上是由微小的晶粒或颗粒组成,它们之间在原子水平上存在着界面,科学家称之为晶界。晶界对于材料特性和功能十分重要,因此这些晶界的结构已被广泛研究。然而,通过手工搜索数十亿种可能的结构,并试图预测它们的行为无异于大海捞针。 LLNL、内华达大学、拉斯维加斯大学,石溪大学和加州大学戴维斯分校的研究人员已经设计了一种基于先进算法和机器学习的方法,能够通过梳理晶界中原子的排列方式,并预测它们将如何在一定条件下相互作用。科学家表示,该方法最终提供了一种预测材料性能的方法,未来可能在开发具有更高强度,更高耐热性或更高导电性的材料方面取得重大突破。这篇论文今年早些时候在菲尼克斯召开的金属和材料学会2018年国际会议上发表。 该项目首席研究员LLNL科学家Timofey Frolov说:“我们开发的第一种计算工具能够有效地采样晶界的可能结构,并找到对应的低能量结构以及重要的亚稳态。令人惊喜和震惊的是,我们自认为已经理解了晶界的结构,但实际上没有。事实上,我们正在从头开始,因为我们所看到的许多晶界结构与我们之前的想法不一样。” 科学家说:“晶界的原子构成是材料在某些条件,如强热或极压条件下,如何表现或改变相位(即固态为液态)的基础。使用机器学习可以探索可能的结构并能够以计算方式对它们进行建模,这可能会对设计用于各种能源应用的材料产生重大影响,这些应用包括固态燃料电池,用于发电的热电,氧传感器,光纤,开关,激光器放大器和镜头等。” “近年来,机器学习发生了一场革命,从而获得以前无法获得的东西,而以前对晶界结构的研究却给出了不正确的结果,那么就需要这些现代技术的力量来找到正确的答案。”LLNL计算材料科学组组长Robert Rudd说。“近几十年来我们所看到的很多技术变革都是通过以前不存在的材料实现的,因此,为这些结构启用和优化设计将会改变游戏规则。” 研究人员使用铜材料创建并表征了新模型,并成功地用硅,钨和其他材料对其进行了演示和测试。LLNL的聚变能源计划中也已经实施。Frolov表示,他希望进一步开发具有多种元素的系统功能陶瓷的方法,该方法会在高温下显示出迷人和复杂的转变。 “最近大量的实验研究表明,掺杂后陶瓷材料的晶粒生长行为发生了巨大的变化,并且将这些变化与晶界处的结构转变联系起来,”Frolev说。“例如,异常大尺寸晶粒的形成可以彻底改变材料的性质,但难以预测或控制。我们的新方法首先可以提供晶界转变的证据,也可以预测晶界的不同状态,并解释实验中看到材料性质产生突然变化的原因。” 原文来自phys网站,原文题目为Machine learning model predicts phenomenon key to understanding material properties,
  • 《机器学习方法加速绿色能源材料的发现》

    • 来源专题:工业强基
    • 编译者:张欣
    • 发布时间:2024-07-05
    • 日本九州大学的研究人员与大阪大学和精细陶瓷中心合作,开发了一个框架,利用机器学习加快绿色能源技术材料的发现。使用这种新方法,研究人员确定并成功合成了两种用于固体氧化物燃料电池的新候选材料,这两种材料可以使用氢等不排放二氧化碳的燃料发电。他们的发现已发表在《先进能源材料》杂志上,也可用于加快能源部门以外的其他创新材料的搜索。 为了应对气候变暖,研究人员一直在开发不使用化石燃料发电的新方法。 九州大学材料科学与技术系跨学科能源研究平台(Q-PIT)的Yoshihiro Yamazaki教授解释道:“实现碳中和的一条途径是创建氢社会。然而,除了优化氢的制造、储存和运输方式,我们还需要提高氢燃料电池的发电效率。” 为了产生电流,固体氧化物燃料电池需要能够有效地将氢离子(或质子)传导通过称为电解质的固体材料。目前,对新型电解质材料的研究集中在具有非常特殊的原子晶体排列的氧化物上,称为钙钛矿结构。 Yamazaki教授说:“发现的第一种质子传导氧化物是钙钛矿结构,新的高性能钙钛矿不断被报道。但我们希望将固体电解质的发现扩展到非钙钛矿氧化物,这种氧化物也具有非常有效地传导质子的能力。”然而,通过传统的“试错”方法发现具有替代晶体结构的质子传导材料有许多局限性。 为了使电解质获得传导质子的能力,必须在基材中添加少量的另一种物质,即掺杂剂。但是,由于有许多有前景的候选碱和掺杂剂——每种都具有不同的原子和电子性质——找到提高质子电导率的最佳组合变得困难且耗时。 相反,研究人员计算了不同氧化物和掺杂剂的性质。然后,他们使用机器学习来分析数据,确定影响材料质子传导性的因素,并预测潜在的组合。 在这些因素的指导下,研究人员合成了两种有前景的材料,每种材料都具有独特的晶体结构,并评估了它们传导质子的能力。值得注意的是,这两种材料仅在一次实验中就证明了质子传导性。 研究人员强调,其中一种材料是已知的第一种具有硅铝石晶体结构的质子导体。另一种具有eulytite结构,具有与钙钛矿中的传导路径不同的高速质子传导路径。 目前,这些氧化物作为电解质的性能很低,但随着进一步的探索,研究团队相信它们的导电性可以提高。