《突破 | 宁波材料所在窄谱带标准绿光OLED材料领域取得重要进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2024-10-23
  • 全球数字经济的迅猛发展促使我们着力研发更窄发光波段的OLED发光材料,以满足国际电信联盟针对超高清电视推荐标准(BT.2020标准)下的高清显示技术要求。多重共振原理为窄带发光材料的分子设计提供了一种新颖的方法。近年来,研究人员开发的基于ν-DABNA及其衍生物的R-2B和R-3B展现出极窄的全宽半高值(FWHM)(R-2B:17nm;R-3B:13nm)。然而,它们的发射峰位于天蓝色区域,不符合BT.2020基色标准。尽管如此,该特殊分子框架仍表现出显著的化学修饰潜力。

    基于此,中国科学院宁波材料技术与工程研究所葛子义研究员、李伟副研究员及其合作者通过将R-2B和R-3B中的苯环替换为萘单元,显著增强了新制备材料NT-2B和NT-3B的成键特性,使得光谱明显向绿光区域移动,同时未增加材料的FWHM(NT-2B:15nm;NT-3B:14nm)。此外,NT-2B和NT-3B展现出较快的辐射衰减速率以及较高的发光量子产率。以磷光材料Ir(ppy)3作为敏化主体、以NT-2B作为客体构建的OLED,其电致发光光谱红移至516~517 nm,最高效率达到30.6%,CIEy值和FWHM分别为0.74和21.5 nm,接近BT.2020标准下绿光的CIEy值,是目前报道中窄带发光绿光OLED最高效率之一。

    图1 NT-2B和NT-3B的分子设计策略、化学结构和吸收发射图

    图2 (A)NT-2B和(B)NT-3B的S1→S0跃迁的重组能(λ)和黄-里斯(HR)因子

    图3 基于NT-2B和NT-3B的三元敏化OLED器件

  • 原文来源:https://onlinelibrary.wiley.com/doi/10.1002/anie.202415113
相关报告
  • 《宁波材料所在LED用稀土发光材料研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-12-26
    • LED固态照明器件具有高效、节能、环保等优点,经过十多年发展已基本取代传统白炽灯、荧光灯而成为新一代照明光源。荧光粉具有波长转换功能,在决定LED白光性能如显色指数、色温、效率等方面起着重要作用,是LED照明器件的关键材料之一,研发效率高和热稳定性较好的荧光粉一直是人们追求的目标。   宁波材料所所属二级所先进制造所的光电功能材料与器件团队研发出一种新型硅酸盐青色荧光粉;在160℃时,其荧光量子效率可维持室温的94%,表现出良好的热稳定性。该研究获国家发明专利一项(ZL201410545720.6),相关结果发表于Advanced Optical Materials(2015, 3(8), 1096-1101,入选封面文章)。   随后,该团队围绕材料,利用量子剪裁和共振能量传递效应,获得了一种发光效率高达144%的绿色荧光粉,实现了可见光量子剪裁(J. Phys. Chem. C 2016, 120, 2362-2370);首次观察到的异常红光发射,采用低温光谱手段追溯到了红光来源(Inorg. Chem. 2016, 55, 8628-8635);在此基础上,通过共掺获得了单一白光。获国家发明专利一项(ZL201510780416.4),相关基础研究结果发表于J. Phys. Chem. C 2015, 119, 24558-24563;Materials Research Bulletin 2016, 80, 288-294。   近期,该团队通过理论和实验相结合,在基青色荧光粉发光性能调控方面开展了系统研究。通过工艺优化,荧光内量子效率提升至90%,85℃/85%RH条件老化1600小时以上的光衰小于10%。仅采用该青色荧光粉与红粉复合,即可在NUV芯片上获得显色指数90以上的白光。基于对第一性原理电子结构计算和理解,结合光谱学的实验表征手段,该团队提出一种计算宽带隙无机非金属材料基体带隙的方法,并揭示了材料发光的热稳定性机理,除了热和声子相互作用可引起发光猝灭外,由热引起的材料吸收率下降是导致发光材料热猝灭的另一个原因。相关结果发表于J. Mater. Chem. C(2017, 5, 12365-12377,入选封面和热点文章)。   团队还将黄色余辉荧光粉稳态荧光内量子效率提升至82%,这为解决交流LED频闪问题提供了一种具有潜在价值的稀土发光材料。相关内容申请国家发明专利2项(2016112538620, 2016112538762),部分研究结果发表于Chem. Commun.(2017, 53, 10636-10639)并入选该期刊封底文章。   以上工作获伦敦布鲁内尔大学Jack Silver教授、中国科学院长春光机所张家骅研究员、日本国立材料研究所/厦门大学解荣军研究员、工信部广州电子五所徐华伟高工的支持,并获国家自然科学基金(NSFC11404351)、浙江省公益技术基金(LGG18E020007)、宁波市自然科学基金(2014A610122,2017A610001)的资助。
  • 《突破 | 深大科研团队在窄谱带OLED研究领域取得重大进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-11-04
    • 近日,深圳大学材料学院杨楚罗教授团队在Nature Photonics(《自然•光子学》)上发表题为“Efficient selenium-integrated TADF OLEDs with reduced roll-off”(基于含硒热活化延迟荧光材料的OLEDs)的研究论文。该研究工作揭示了重原子效应与多重共振热活化延迟荧光(TADF)性能之间的构效关系。硒嵌入的多重共振热活化延迟荧光材料可以实现高性能有机发光二极管(OLED)器件。该策略有效解决了多重共振型TADF器件在高发光亮度下,发光效率严重降低的瓶颈问题,在高清显示产业上具有应用前景。 该项研究由深圳大学独立完成。深圳大学材料学院特聘教授杨楚罗为通讯作者,深圳大学材料学院博士后胡宇轩和助理教授缪景生为本研究工作的共同第一作者。 OLED技术已经广泛地应用于中小尺寸手机屏等消费电子品终端,并逐步向大尺寸显示屏渗透。发光材料是OLED显示屏的核心,纯有机热活化延迟荧光(TADF)材料因其高效率、低成本等优点,被认为是继磷光材料后的新一代电致发光材料。近几年,多重共振型TADF材料因其刚性的结构骨架和较小的结构弛豫而表现出窄谱带发射的性质,其窄谱带发射可以和量子点发光二极管(QLED)以及微型发光二极管(Micro LED)20 nm左右的窄半高宽发光峰相媲美。然而基于多重共振型TADF材料的OLED器件普遍存在高亮度下发光效率急剧下降的问题,其根本原因在于这类材料反向系间窜跃速率(kRISC)较慢,在高电流密度下三线态激子不能得到快速有效利用而大量湮灭,从而导致严重的效率滚降。 为了解决效率滚降的关键难题,该研究团队采用氧、硫和硒分别嵌入具有多重共振TADF的硼、氮杂稠环结构中,合成了单硒的BNSSe和双硒的BNSeSe,将硒替换为氧和硫的2PXZBN和2PTZBN四个窄谱带绿光材料,研究了重原子的引入对四个材料的延迟荧光寿命和器件性能的影响。 该研究表明引入具有较大原子质量硒的BNSeSe发光材料所制备的OLED器件,表现出非常小的效率滚降,最大外量子效率高达36.8%,在1000 cd m-2亮度下外量子效率为34%,即使是在10000 cd m-2超高亮度下外量子效率仍高达21.9%,这一结果可以与基于铱、铂等含贵金属的磷光材料器件相媲美。进一步,该研究团队选取了另外两个与BNSeSe能级匹配良好的窄谱带多重共振TADF材料BN3和DtCzB-DPTRZ作为发光客体,将BNSeSe作为敏化剂,分别获得了最大外量子效率分别高达40.5%和39.6%,在10000 cd m-2超高亮度下外量子效率仍分别高达23.3%和24.3%的黄光和纯绿光OLED器件。 这一工作为解决多重共振TADF OLED器件的效率滚降问题提供了有效途径,在高清显示产业上具有应用前景。