《CT技术在农业工程研究中的应用现状和展望》

  • 来源专题:农机装备
  • 编译者: 江浩
  • 发布时间:2025-06-05
  • 摘要:计算机断层扫描(CT)技术,作为一种先进的非侵入式成像技术,融合了X射线和计算机重建算法,能够精确揭示物体内部结构,在农业工程研究领域具有巨大的应用前景,逐渐成为推动农业工程智能化和精准化的重要技术之一。为了系统总结CT技术在农业工程领域的应用现状和分析该技术的未来发展趋势,该文概述了CT技术的基本原理,包括设备构造、工作流程、图像重建和后处理技术等,并通过与其他无损检测技术的对比,突出了CT技术在高分辨率、强穿透力等方面的显著优势,梳理了CT技术在果蔬品质检测、籽粒评价、茎杆分析、根系分析以及土壤孔隙分析等研究领域的应用实例。同时,该文结合CT技术的应用现状,分析了目前该技术存在设备操作流程复杂、图像处理难度高、检测分辨率限制和设备成本高昂及辐射安全等问题,提出了CT技术应用发展趋势有丰富研究对象、增强应用效果和优化技术环节等方面,旨在为CT技术在农业工程领域进一步应用发展提供参考,以促进CT技术与农业工程研究的深度融合及在相关研究中的应用。关键词: CT技术  /  农业工程  /  无损检测  /  图像重建  /  后处理技术  /  发展趋势  
  • 原文来源:http://www.tcsae.org/article/doi/10.11975/j.issn.1002-6819.202411215
相关报告
  • 《基因组编辑技术及应用成为全球农业研究重点热点》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-11-20
    • 11月20日,《2019全球农业研究热点前沿》在2019中国农业农村科技发展高峰论坛上发布,该报告显示,在作物学科领域Top8研究热点及前沿中,“基因组编辑技术及其在农作物中的应用”成为重点热点。 该报告以文献计量学中的共被引理论为基础,基于科睿唯安ESI数据库的前沿数据,遴选获得2019年度农业8大学科62个研究热点,其中有14个热点最具前瞻性,被确定为农业研究前沿。 在作物科学领域,研究人员已成功利用基因组编辑技术CRISPR/Cas系统对多种农作物的基因组进行了编辑。CRISPR/Cas已广泛用于重要农作物如水稻、小麦、玉米、大豆、油菜、棉花等基因功能验证和重要农艺性状的遗传改良,其已成为农作物重要基因功能验证和品种遗传改良的重要工具和研究热点。 从该热点核心论文主要产出国家来看,美国共有24篇,中国有21篇,分别占核心论文总量的51.06%和44.68%,遥遥领先于其他国家。其次是德国,核心论文量为4篇,占总量的8.51%。从论文产出机构看,中国科学院产出论文11篇,排名第一,占比23.40%。其次是美国明尼苏达大学,产出论文8篇,占比17.02%。排名前十的机构中有4家来自美国,3家来自中国,其他来自法国、德国和韩国。上述统计结果表明,在该前沿中,美国和中国及其研究机构具有较高影响力和活跃度,具有比较明显的竞争优势。 报告发布人、中国农科院副院长梅旭荣指出,基因组编辑技术为农作物的驯化提供了一种新的有效手段,通过对农作物重要驯化基因进行定向编辑实现作物的重新驯化,对提高作物的环境适应性具有重要意义。基因组编辑技术也能为生物合成代谢途径的人工设计提供有力的工具,有望实现细胞代谢功能的精确调控。此外,利用基因组编辑技术可以进行表观基因调控如DNA甲基化或组蛋白修饰,不改变基因组序列仅通过改变表观遗传标记对作物性状进行改良。 报告显示,在植物保护学科领域,“受体蛋白在植物抗病中的作用机制”成为重点前沿;在畜牧兽医学科领域,“肉牛剩余采食量遗传评估及营养调控”“非洲猪瘟的流行与传播研究”分别入选重点热点和重点前沿;在农业资源与环境学科领域,“基于功能材料与生物的河湖湿地污染修复”成为重点前沿;在农产品质量与加工学科领域,“浆果中主要生物活性物质功能研究”成为重点热点;在农业信息与农业工程学科领域,“生物柴油在燃油发动机中的应用”“微纳传感技术及其在农业水土食品危害物检测中的应用”成为重点热点和重点前沿。
  • 《低空经济政策和技术在农业农村的应用现状与前景》

    • 来源专题:农机装备
    • 编译者:袁雪
    • 发布时间:2025-04-17
    • Abstract: The low-altitude economy has gained significant attraction in recent years, particularly in the context of smart agriculture. It is very necessary for innovative solutions to enhance agricultural productivity and sustainability, due to the more pressing populations and scarce arable land. The low-altitude economy can be expected to offer a promising avenue for these challenges. This review was focused on the frontiers and hotspots in the agricultural application of the low-altitude economy in rural areas. A literature analysis was employed to analyze the journal articles and global patents from 2000 to 2024. The keyword co-occurrence networks and citation relationships were determined to identify the research hotspots and directions. Low-altitude technologies (particularly unmanned aerial vehicles, UAVs) also shared key applications in agricultural information acquisition, plant protection, land resource management, environmental monitoring, and rural logistics. The UAVs equipped with the advanced sensors were used to collect real-time data on crop health, soil conditions, and weather patterns, in order to optimize irrigation, fertilization, and pest control. Precision spraying also reduced the chemical usage. While the land resource management benefited from the accurate monitoring. Environmental and disaster monitoring with UAVs also enabled swift responses to floods, droughts, and wildfires. Additionally, the UAVs also transformed into agricultural logistics, particularly for the efficient transport solutions in remote areas. Several technological challenges were given to fully realize the immense potential of the low-altitude economy. One of the primary challenges was to specially design advanced UAVs in diverse and harsh agricultural environments. The better performance was required for the flight stability, battery life, and payload capacity. Flight control systems were also required for safe and efficient operations in the crowded airspaces. The data accuracy and reliability were further enhanced to refine the onboard mission payloads and auxiliary equipment, such as the high-resolution cameras and multispectral sensors. Information perception and precision operation were critical to real-time data processing and decision-making. The air-ground collaborative control systems were essential to integrate the low-altitude operations with the existing agricultural infrastructure. The successful implementation of the low-altitude economy in agriculture was dependent heavily on the decision-making on the regulatory frameworks. Furthermore, the legal systems and industry standards were established to manage the low-altitude airspace for safety, efficiency, and accountability in Europe and the United States. These frameworks also provided valuable implications for the rest regions in China. Fine-grained management was selected to promote the pilot of low-altitude airspace opening in smart agriculture; Streamline certification was also utilized to optimize the airworthiness approval procedures for the low-altitude aircraft; Regional low-altitude economy was also enhanced to construct the industrial clustering and the testing bases. Future research can be focused on lightweight sensors and intelligent algorithms. An "air-space-ground" monitoring network can be expected to integrate and optimize the dynamic airspace. Further applications can also be expanded into carbon sink monitoring, biological breeding, and disaster emergency response. This finding can provide theoretical and practical references to accelerate the low-altitude economy in rural areas. The great contribution can also be gained to the agricultural modernization and rural revitalization.