近日,普渡大学的研究人员成功地将铯原子捕获到集成光子电路上,该光子电路的功能相当于光子的晶体管,类似于电子晶体管控制电信号的方式。这项由Chen-Lung Hung副教授领导的突破,发表在《Physical Review X》期刊上,展示了使用冷原子集成纳米光子电路构建量子网络的潜力。
“我们开发了一种技术,使用激光来冷却并密集捕获集成在纳米光子电路上的原子,其中光在一个细小的光子'线'中传播,或者更准确地说,在一条比人的头发细 200 多倍的波导管中传播,”Hung解释说,他也是普渡大学量子科学与工程研究所的成员。
Hung解释说,这些原子被“冻结”到零下459.67华氏度,或仅比绝对零度高0.00002度,基本上处于静止状态。在这种极低的温度下,原子可以被瞄准光子波导的“牵引光束”捕获,并放置在比光的波长短得多的距离上——大约 300 纳米或者相当于病毒的大小。在这个距离下,原子可以非常有效地与限制在光子波导管内的光子相互作用。
Hung进一步提到,他们使用Birck纳米技术中心最先进的纳米加工仪器,将光子波导管设计成直径约为30微米(比人类头发的直径小三倍)的圆形,以创建微环谐振器。然后,光将在微环谐振器内循环,并与被捕获的原子相互作用。
该研究表明,这些被捕获的原子能够控制光子在电路中的传播,从而根据原子的状态允许或阻止光子的传输。如果原子处于正确的状态,光子就可以通过电路传输。如果原子处于另一种状态,光子就会被完全阻挡。原子与光子的相互作用越强,这个门就越有效。这个平台可以为未来的量子计算和光&物质相互作用的新实验铺平道路。
该项目的所有团队都位于普渡大学,多年来一直在推进这一领域研究,并继续探索新的研究方向,包括高效的原子冷却和电路捕获。