《聚合物纳米粒子清除及体内分布的影响因素》

  • 来源专题:重大新药创制—研发动态
  • 编译者: 杜慧
  • 发布时间:2014-12-18
  • 纳米颗粒药物传递系统 (5-250nm) 因其能克服多个生物屏障并且可缓解最佳剂量范围内治疗负荷而在改善疾病治疗方面具有巨大潜力。纳米颗粒的快速清除是药物传递中一个关键的问题,因此了解纳米颗粒分布及半衰期的影响因素是十分必要的。在这篇综述中,我们会讨论影响纳米颗粒血液滞留时间和器官特异性积累的因素。这些因素包括与生物屏障的相互作用和可调节的纳米颗粒参数,如成分、 尺寸、 核心性能、 表面修饰 (聚乙二醇化和表面电荷) ,还有靶向配体的官能团化。所有这些因素均可从根本上影响纳米颗粒的生物分布和半衰期,它们是通过降低循环纳米颗粒的非特异性吸收,延缓调理作用,并增加组织特异性积累而发挥作用的。

相关报告
  • 《在大鼠体内分布的纳米银:离子和次级粒子的作用》

    • 来源专题:食物与营养
    • 编译者:huangzheng
    • 发布时间:2016-08-16
    • 银纳米粒子作为抗菌药物在广泛范围内受到广告推广。大部分可用的研究表明,银纳米颗粒的毒性主要是由银离子释放的粒子。然而,区分银纳米颗粒和银离子的影响,它仍然是具有挑战性。这里我们使用一个短期的组合体内研究在老鼠和一个在毒性动力学模型来确定组织管理的离子分布和nanoparticulate银、银和估计混合比率不同的物种,即主要纳米粒子、离子和次级粒子。我们的数据表明,银纳米颗粒和银离子或略微可利用单一口服摄入后,无毒剂量。静脉注射后的器官分布实验数据准确的预测反映在计算机模型。毒性动力学建模显示系统的主要比例注入离子分布银子新创形成二次纳米粒子,这种粒子的存在是证明电子显微镜。银离子,形成二次粒子,突显了在区分粒子和银纳米粒子的影响。
  • 《利用聚合物开发3D打印中的金纳米颗粒》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-04-02
    • 3D打印,也被称为增材制造,已经成为一种非常有用的技术,用于制造非常小和复杂的结构。它最初的建立促进了个人和有趣的对象的创造,这些对象是由对技术感兴趣的人在家里打印出来的。 然而,随着时间的推移,越来越多的制造商开始转向3D打印方法,以比其他方法更低的成本生产复杂的定制零件。这是一个不断发展的科学、工程和制造领域,而且很可能在未来许多年内继续沿着这条道路发展。 与3D打印这种相对较新的技术不同,金纳米颗粒已经被使用了很多年——甚至在我们知道纳米颗粒是什么之前。这在4世纪的人工制品Lycurgus杯中表现得很明显,金纳米颗粒被证明是造成所观察到的二色性颜色的原因。 在现代科学中,金纳米颗粒已经被用于多种应用,从抗癌剂到表面等离子体成像增强剂,再到电子、催化剂、主动传感器材料中的导电管道,等等。 与更复杂的纳米颗粒相比,它们合成起来相对简单,而且它们的广泛应用意味着研究人员现在正在转向其他制造、使用和整合它们的方法。 近年来,研究人员开发了利用3D打印方法,在打印过程中将金纳米颗粒直接与聚合物和其他介质结合,从而生成包含金纳米颗粒的3D打印复合材料。 近年来,这一交叉领域取得了长足的进步,为光学和制药行业带来了广阔的发展前景。下面,我们来看看这个领域是如何发展的。 通过3D打印在聚合物中嵌入金纳米颗粒 利用这些技术的一种更成熟、更常见、更简单的方法是使用聚合物作为嵌入多种类型纳米颗粒(包括金纳米颗粒)的复合介质。 现在有很多聚合物纳米复合材料,但是最近的一项研究涉及到使用聚合物和金纳米颗粒来制造本质上是双色的3D打印复合材料(很像Lycurgus杯子),用作光学过滤器。 以聚醋酸乙烯酯(PVA)为载体,采用熔融沉积模拟(FDM)方法制备了纳米复合材料。当纳米颗粒- pva纳米复合材料干燥时,呈现出一种棕色反射和紫色透射的二向色效应,而用更传统的方法形成的类似纳米复合材料则没有这种效应。 研究人员还用这种双色材料制作了一个花瓶和一个水杯,虽然要使用,但它们需要涂上一层聚二甲基硅氧烷(PDMS),以防止水渗透到纳米复合材料中。 使用微流体 这一领域虽然没有那么发达,但却很有趣,它依赖于制造可用于合成金纳米颗粒的聚合装置,而不是在3D打印过程中使用它们。 研究人员利用FDM技术制造了一种聚乳酸(PLA)微流控装置,并将其置于聚甲基丙烯酸甲酯(PMMA)载玻片上,以制造微流控通道。这些微流体通道随后被用作反应室,通过连续流动的合成路线来制造金(和银)纳米颗粒,因为这可以防止聚合物通道被污染。 通过改变微流体的合成参数(浓度、温度、流速等),可以制备出不同尺寸的金纳米颗粒。 制造纳米金墨水 最近的一项研究涉及使用梳状聚合物体系结构来开发金纳米颗粒油墨。该团队使用了不同的逐步增长聚合和click化学方法来开发不同的聚合物体系结构(基于聚氨酯),可以包裹和封装金纳米粒子。 然后是(3D打印)喷墨打印的封装金纳米颗粒油墨。在许多情况下,金纳米颗粒油墨在喷墨打印时是不稳定的,因为纳米颗粒易于凝聚,但在封装时,聚合物稳定了金纳米颗粒,这意味着它们可以在表面打印而不会发生凝聚。 聚合物-纳米颗粒油墨被发现是长期稳定的(超过6个月)。金纳米粒子在制药工业中有很大的潜力,这种聚合物稳定印刷方法可以用于制造稳定的、定制的金纳米粒子生物传感器。 人们认为,这种方法也可以用于稳定和在聚合物中嵌入其他金属纳米颗粒,从而为更多的应用开辟了潜力。