《大容量、高能量密度的水系锌电池问世》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2023-01-10
  • 记者从中国科学技术大学获悉,该校化学与材料科学学院陈维教授课题组,设计了一种稳定的金属/金属-锌合金异质结界面层,实现了大面容量下无锌枝晶的稳定沉积和溶解反应以及高达274瓦时/公斤的锌溴电池能量密度。另外,大容量锌溴电池展示出优异的循环稳定性,电池模组与光伏面板集成展示了其对可再生能源的存储能力。相关研究成果日前发表于国际期刊《自然·通讯》上。

  • 原文来源:https://solar.in-en.com/html/solar-2416732.shtml
相关报告
  • 《大幅提高电池能量密度 锌碘单液流电池概念问世》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-21
    • 中国科学院大连化物所研究员李先锋、张华民领导的研究团队创新性提出锌碘单液流电池的概念,实现锌碘单液流中电解液的利用率达到近100%,大幅提高了电池的能量密度。相关研究成果在线发表于《能源环境科学》上。 大规模储能技术是实现可再生能源大规模利用的关键技术,液流电池因具有安全性高、循环寿命长、效率高等特点,是大规模储能的首选技术之一。而锌碘液流电池是液流电池技术的一种,因具有较高能量密度和环境友好等优势,近年来受到越来越多的关注。 在前期研究中,该科研团队通过优化电解液组成和膜材料,提高了锌碘液流电池的循环寿命和功率密度。但是,电解质利用率相对较低问题仍待解决。 随后,该团队提出了锌碘单液流电池的概念。与传统锌碘液流电池不同,锌碘单液流电池只有负极一侧具有流动循环系统,正极为固体,因此碘离子可以充电到固态碘单质,使得电解质的利用率接近100%,大幅提高了电池的能量密度,并同时提高了锌碘单液流电池的功率密度。上述工作为高能量密度液流电池新体系的开发提供了重要借鉴。
  • 《我科研人员开发高压电解液构筑高能量密度锂电池体系》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-04-02
    • 3月31日,记者从中国科学院青岛生物能源与过程研究所获悉,该研究所先进储能材料与技术研究组在武建飞研究员的带领下,近期在高电压电解液体系开发应用方面取得关键性进展,相关研究成果近日发表于国际期刊《化学工程杂志》。 据介绍,当前锂离子电池由于其出色的电化学性能已经广泛应用于电动汽车,正极材料是影响锂离子电池性能的关键因素之一,使用高比能正极材料(如NCM811)以及提高电池工作电压(>4.2V)是获得更高能量密度的最有效途径。然而,传统的碳酸酯基电解液无法适配高压电池体系,同时三元正极材料在高电压下发生各种副反应,最终导致体系劣化、容量衰减。 记者了解到,该研究团队开发了一种新型的高压氟化电解液体系,将NCM811正极材料的工作电压从4.2V突破性地提高到4.6V,拓展了三元体系的使用上限和应用范围,解决了两个重要问题:极大提高了高镍三元正极体系的比容量和工作电压,抑制NCM811正极在高电压下的结构相变、过渡金属离子溶出以及二次粒子的开裂,降低了极化,从而提高体系的能量密度和循环性能。构建了稳定的CEI和SEI,实现高负载量高镍三元体系电池在高电压下的可逆稳定循环。 武建飞介绍,通过密度泛函理论(DFT)计算系统阐述了该高压电池体系性能提升的原因。氟取代基(-F)具有很强的吸电子作用,降低了溶剂的最高被占据分子轨道(HOMO),从而提高了电解液的氧化电位。通过在正极表面形成了薄而均匀的富B和富F的无机电解质界面,减少了二次粒子的开裂从而缩小正极和电解液之间的接触面积,极大地抑制了电接触不良、副反应以及过渡金属离子溶出,从而突破了高镍三元正极在高电压下容量衰减严重等障碍,为设计开发高能量密度锂离子电池提供了新的思路和途径。