《高质量二维碘化铅晶体----又薄又软的半导体新材料制作微纳光电器件》

  • 来源专题:集成电路
  • 编译者: shenxiang
  • 发布时间:2019-04-14
  • 性质柔软、厚度只有几纳米、光学性能良好……记者近日从南京工业大学获悉,该校王琳教授课题组制备出一种超薄的高质量二维碘化铅晶体,并且通过它实现了对二维过渡金属硫化物材料光学性质的调控,为制造太阳能电池、光电探测器提供了新思路。该成果发表在最新一期国际期刊《先进材料》上。

    “我们首次制备的这一超薄碘化铅纳米片,专业术语称为‘原子级厚度的宽禁带二维PbI2晶体’,是一种超薄的半导体材料,厚度只有几个纳米。”论文第一作者、南京工业大学博士研究生孙研说,他们采用了溶液法来合成,这种方法对设备要求很低,具有简单、快速、高效的优点,能够满足大面积和高产量的材料制备需求。合成出的碘化铅纳米片具有规则的三角形或者六边形形状,平均尺寸6微米,表面光滑平整,光学性能良好。

    科研人员把这一超薄的碘化铅纳米片与二维过渡金属硫化物结合,进行人工设计,把它们堆叠到一起,获得不同类型的异质结,因为能级排列方式不一样,因此碘化铅能够对不同二维过渡金属硫化物的光学表现起到不同影响。这种能带结构可以有效地提高发光效率,有利于制作像发光二极管、激光这类的器件,应用在显示与照明中,并可以利用在光电探测器、光伏器件等领域。

    这一成果实现了超薄碘化铅对二维过渡金属硫化物材料光学性质的调控,与传统以硅基材料为主体的光电子器件相比,该成果具有柔性、微纳特点,因此可以应用在制备柔性化、可集成的光电子器件方面,基于碘化铅纳米片的二维半导体异质结,在可集成化的微纳光电器件领域有着广阔的应用前景,为制造太阳能电池、光电探测器等等,也提供了一个新思路。

相关报告
  • 《又薄又软的半导体新材料可制微纳光电器件》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-09
    • 性质柔软、厚度只有几纳米、光学性能良好……记者3日从南京工业大学获悉,该校王琳教授课题组制备出一种超薄的高质量二维碘化铅晶体,并且通过它实现了对二维过渡金属硫化物材料光学性质的调控,为制造太阳能电池、光电探测器提供了新思路。该成果发表在最新一期国际期刊《先进材料》上。 “我们首次制备的这一超薄碘化铅纳米片,专业术语称为‘原子级厚度的宽禁带二维PbI2晶体’,是一种超薄的半导体材料,厚度只有几个纳米。”论文第一作者、南京工业大学博士研究生孙研说,他们采用了溶液法来合成,这种方法对设备要求很低,具有简单、快速、高效的优点,能够满足大面积和高产量的材料制备需求。合成出的碘化铅纳米片具有规则的三角形或者六边形形状,平均尺寸6微米,表面光滑平整,光学性能良好。 科研人员把这一超薄的碘化铅纳米片与二维过渡金属硫化物结合,进行人工设计,把它们堆叠到一起,获得不同类型的异质结,因为能级排列方式不一样,因此碘化铅能够对不同二维过渡金属硫化物的光学表现起到不同影响。这种能带结构可以有效地提高发光效率,有利于制作像发光二极管、激光这类的器件,应用在显示与照明中,并可以利用在光电探测器、光伏器件等领域。 这一成果实现了超薄碘化铅对二维过渡金属硫化物材料光学性质的调控,与传统以硅基材料为主体的光电子器件相比,该成果具有柔性、微纳特点,因此可以应用在制备柔性化、可集成的光电子器件方面,基于碘化铅纳米片的二维半导体异质结,在可集成化的微纳光电器件领域有着广阔的应用前景,为制造太阳能电池、光电探测器等等,也提供了一个新思路。
  • 《半导体所二维半导体的磁性掺杂研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-21
    • 近年来,二维范德华材料例如石墨烯、二硫化钼等由于其独特的结构、物理特性和光电性能而被广泛研究。在二维材料的研究领域中,磁性二维材料具有更丰富的物理图像,并在未来的自旋电子学中有重要的潜在应用,越来越受到人们的关注。掺杂是实现二维半导体能带工程的重要手段,如果在二维半导体材料中掺杂磁性原子,则这些材料可能在保持原有半导体光电特性的同时具有磁性。近日,中国科学院半导体研究所半导体超晶格国家重点实验研究员魏钟鸣、李京波带领的科研团队,在铁掺杂二维硫化锡(Fe-SnS2)晶体的光、电和磁性研究方面取得新进展。   硫化锡(SnS2)是一种光电性能优异的二维范德华半导体材料,也是目前报道的光电响应时间最快的二维半导体材料之一。该材料无毒、环境友好,含量较丰富而且易于制备。该研究团队通过用传统的化学气相输运法摸索生长条件,获得不同掺杂浓度的高质量的Fe-SnS2单晶,然后通过机械剥离法获得二维Fe-SnS2纳米片。扫描透射电子显微镜(STEM)结果表明,Fe原子是替位掺杂在Sn原子的位置,并且均匀分布。通过生长条件的调控,结合X射线光电子能谱(XPS)分析,可以获得一系列不同的晶体,铁的掺杂浓度分别为2.1%、1.5%、1.1%。单层Fe0.021Sn0.979S2的场效应晶体管测试表明该材料是n型,开关比超过106,同时迁移率为8.15cm2V-1s-1,光响应度为206mAW-1,显示了良好的光电性能。   单晶片磁性测试表明,SnS2是抗磁性的,Fe0.021Sn0.979S2和Fe0.015Sn0.985S2具有铁磁性,而Fe0.011Sn0.989S2则显示出顺磁性。实验测得Fe0.021Sn0.979S2的居里温度为31K。当温度为2K,外磁场沿垂直c轴和平行c轴方向时可以获得不一样的磁性,即强烈的磁各向异性。理论计算表明,Fe-SnS2的磁性来源于Fe原子与相邻S原子的反铁磁耦合,而相邻Fe原子间是铁磁耦合,这样在这种磁性原子掺杂材料中就形成了长程铁磁性。该研究表明铁掺杂硫化锡在未来的纳米电子学、磁学和光电领域有潜在的应用。   相关研究成果发表在Nature Communications上。研究工作得到中国科学院“相关人才计划”和国家自然科学基金委相关人才计划、面上项目的资助。