《青藏高原或成中国最佳天文观测地》

  • 来源专题:天文仪器与技术信息
  • 编译者: zwg@niaot.ac.cn
  • 发布时间:2019-05-02
  • DAOCHENG COUNTY IN CHINA—"I've seen people faint here," warns physicist He Huihai as he deplanes at Daocheng Yading Airport, the world's highest at 4411 meters above sea level. Many of his colleagues at the Institute of High Energy Physics (IHEP) in Beijing take a day to acclimate before resuming work on the Large High Altitude Air Shower Observatory (LHAASO), an ambitious new observatory here on the eastern edge of the Tibetan Plateau.

    Although troublesome for humans, the thin air is exactly what makes Tibet good for observing the staggeringly energetic photons that crash into Earth from unidentified objects across the universe. After 3 years of construction, LHAASO is nearly finished and begins observations on 26 April.

    LHAASO is just the first in a batch of observatories taking shape across the Tibetan Plateau, which might one day rival the high, dry, Atacama Desert in Chile as a home for premier observatories. IHEP's Ali CMB Polarization Telescope (AliCPT), under construction in the plateau's west, will start its hunt for signs of primordial gravitational waves next year. This year, the National Space Science Center will begin to build the Daocheng Solar Radio Telescope (DSRT), which will study the sun's violent outbursts. And the National Astronomical Observatories of China (NAOC) in Beijing is studying sites on the northwestern rim of the plateau for a 12-meter Large Optical-Infrared Telescope (LOT), larger than any existing telescope.

    Astronomers have long recognized the potential of the Tibetan Plateau, which has the highest average elevation of any region on Earth. In 1990, IHEP established a small cosmic ray observatory near Lhasa at 4300 meters. Since 2010, NAOC's Ali Observatory, at 5100 meters, has hosted several small telescopes. But the scientific building boom accelerated after the four new observatories won funding under China's latest Five-Year Plan, covering 2016 to 2020, as part of the nation's efforts to boost basic research. New roads and airports, built as part of China's controversial effort to tie Tibet more closely to the nation, are also encouraging astronomers to come.

    Now, the country's biggest optical telescope is a 4-meter facility near Beijing that has not lived up to expectations. The LOT, in contrast, would be one of the most powerful telescopes on Earth. A dispute over its design has delayed progress, but once NAOC settles on a site it hopes to move forward, says NAOC Vice President Xue Suijian. Such an instrument would allow China's astronomers to join the hunt for exoplanets, study the evolution of galaxies, and watch for optical counterparts to gravitational waves, he says.

    Reaching for the stars

    Four observatories under the auspices of the Chinese Academy of Sciences are taking advantage of the thin, dry air of the Tibetan Plateau.

    In contrast to that versatile giant, the DSRT has a singular focus: to study solar flares and coronal mass ejections, outbursts that hurl waves of charged particles toward Earth. To capture radio waves emitted during those eruptions, the DSRT's 401 4.5-meter parabolic radio antennas are spaced in a 1-kilometer-wide circle—the best arrangement for imaging the sun, says Yan Jingye, chief engineer of the project. Traveling at light speed, the radio waves outrace the particles, which means the DSRT could help forecast the havoc the outbursts can wreak when they crash into Earth's magnetic field 2 to 3 days later. Yan says the ultimate aim is "real-time analysis and real-time prediction"—which could help spacecraft operators shut down electronics until a storm passes.

    AliCPT is the highest of the observatories, perched at 5250 meters to elude the atmospheric water vapor that can block microwaves from the cosmic microwave background (CMB), the afterglow of the big bang. Its antenna will funnel CMB photons to thousands of sensors to search for a telltale pattern in the light's polarization. That pattern would be evidence for the gravitational waves generated by a hypothesized growth spurt in the newborn universe, known as inflation. Although international teams are searching for this signal in the Southern Hemisphere, AliCPT would be the first in the north. "Ideally, you'd want to map the entire CMB sky and from what I know the Tibetan Plateau looks quite promising," says Peter Timbie, a cosmologist at the University of Wisconsin in Madison.

    LHAASO will join a worldwide search for the highest energy photons in the universe: gamma rays that, in rare cases, can exceed the energy of Earth's most powerful particle accelerators. When gamma rays strike the atmosphere, they create a cascade of secondary particles spreading in a cone until they hit the ground. Higher energy photons create more secondary particles, which shower across a wider footprint. To catch particles from lower energy photons, LHAASO will use three 5-meter-deep pools of water covering an area larger than 14 U.S. football fields. When the particles hit the water, they will spark faint flashes of blue Cherenkov light spotted by detectors at the bottom of the pools. Thousands of cheaper detectors spaced out across the 1.3-kilometer site will watch for higher energy gamma rays. An additional 1170 buried detectors will look for particles called muons, which can help discriminate between gamma ray showers and showers caused by cosmic rays, charged particles that can also reach extraordinary energies.

    Unlike cosmic rays, the paths of gamma rays are unaffected by magnetic fields, making it possible to trace them back to their distant sources. Cao Zhen, LHAASO's chief scientist, says the facility's size gives it a shot at nabbing about 10 of the highest energy gamma rays a year, which could help unravel where they come from—perhaps supernovae, neutron stars, or black holes—and how they are generated. "That's been a mystery for 100 years," Cao says.

    "LHAASO starting to take data opens some very exciting prospects," says Peter Mészáros, a theoretical astrophysicist at Pennsylvania State University in State College. LHAASO should also detect photons from gamma ray bursts (GRBs), brilliant outbursts that appear out of nowhere and fade within days. Searchlight beams of radiation jetting out from certain supernovae or neutron star mergers are thought to cause the bursts, but the precise mechanism is a mystery. "Knowing the maximum energy of gamma ray photons from a GRB [could provide] important clues," Mészáros says.

    By creating infrastructure and astronomical know-how, the observatories in Tibet could pave the way for successors. Local governments here and in Ali are moving to preserve radio-quiet zones and minimize light pollution in hopes of attracting future projects. And the facilities themselves will show whether Tibet's rarefied air lives up to its astronomical promise.

  • 原文来源:https://www.sciencemag.org/news/2019/04/china-s-ambitious-telescopes-rise-thin-air-tibetan-plateau?from=groupmessage&isappinstalled=0
相关报告
  • 《【中国科学报】与青藏高原来一场“五年之约”》

    • 来源专题:青藏高原所信息监测服务
    • 发布时间:2016-10-14
    • 2016年,中国科学院大学教授王艳芬一行十余人在海拔4600米的高原上度过了一个特殊的中秋节。9月14—18日,王艳芬带领着团队,实地考察了青藏高原那曲、安多、班戈等地的高寒生态系统和野外台站。   此行的目的,是为国家重点研发计划项目“典型高寒生态系统演变规律及机制”项目铺路。9月21日,这个由中国科学院大学主持、中国科学院成都生物研究所等14家科研单位和高校共同参与的项目,在北京宣布正式启动。   高原之痛   青藏高原是我国重要的生态安全屏障和草地畜牧业生产基地,约70%是高寒草地。草地退化是当前青藏高原高寒生态系统面临的主要问题。有研究认为,目前青藏高原有50%以上的草地处于不同程度的退化之中。超载过牧、鼠虫害、草地畜牧业政策不合理以及气候变化是造成草地退化的重要原因。此外,沙化土地与潜在沙化土地面积约占该区域总土地面积的18%。   在项目负责人王艳芬看来,尽管青藏高原高寒草地退化生态系统的恢复在某些区域初见成效,但整体而言,由于生态系统脆弱,海拔4000米以上地区的高寒草地仍面临着退化的严峻威胁。“从科学角度讲,对青藏高原高寒草地的退化现状、机制、趋势、恢复及适应性管理仍需要进行深入系统的研究。”她说。   上高原 为前沿   “典型高寒生态系统演变规律及机制”项目正是在这样的背景下诞生的。该项目隶属于科技部重点专项“典型脆弱生态修复与保护研究”,拟从微观到宏观、地上到地下多尺度综合研究典型高寒草地生态系统演变规律及机制,揭示青藏高原高寒草地的退化机制,发展和完善高寒草地的退化与恢复理论,进一步凝练出高寒草地的适应性管理原理与途径,为高寒草地畜牧业的可持续发展提供科学依据。   项目根据青藏高原高寒草地生态系统所面临的实际问题,提出了五个方面的前沿科学问题。例如,高寒草地生态系统的退化甚至沙化问题,已经直接威胁青藏高原畜牧业和区域可持续发展。   “目前,这一区域草地退化/沙化的判定主要采用生态指标,如植被指数、植物净第一性生产力等,但对涉及农牧民生活的生产指标依然缺乏必要的认识。”王艳芬透露,子课题“青藏高原高寒草地退化和沙化时空格局”正是为了进一步完善退化判定的分类分级指标体系、描述草地退化沙化现状、确定合理载畜量而设置的。   研究人员将引入大数据挖掘等新的技术手段,建立综合生态、生产指标的草地退化/沙化判定指标体系,力图为青藏高原不同区域高寒草地适应性恢复和管理提供必要的数据和技术支撑。   在9月21日召开的项目启动暨实施方案论证会上,与会论证专家一致认为,项目立项的科学目标明确,科学问题重要,符合国家重大需求,项目研究内容详实,方案设计合理,涵盖了青藏高原生态保护与恢复的关键科学问题。   将论文写在高原上   中国科学院成都生物所赵新全所长认为,“本项目虽然是做基础研究,但也要与区域问题结合起来,从问题出发,形成一种‘倒逼’机制,推动对草地管理中科学问题的关注和研究。”   于是,从现在开始到2020年,王艳芬团队不仅要在科学和技术上实现诸多突破,更要向高原上的农牧民交上一份满意的“答卷”。   为此,项目组将通过科学研究,促进民族区域经济发展,维护民族团结和社会稳定。更关键的是,为退化草地的自然恢复和工程修复提供理论和数据基础,全面推进重点地区生态环境保护,加快畜草平衡工程的顺利实施,优化传统牧业模式,支撑和增强青藏高原高寒草地生态系统功能提升,实现草地的适应性管理和可持续发展。   这也是中国科学院院士傅伯杰等专家组成员共同的愿望:“研究工作要瞄准国家需求,立足区域尺度,聚焦脆弱区生态修复和保护,关注草原生态保育与牧民增收问题,为实现国家战略和科研创新作出贡献。”   (原载于《中国科学报》 2016-09-27 第4版 综合)
  • 《144.79米!我国获青藏高原湖泊最长岩芯》

    • 来源专题:长江流域资源与环境知识资源中心 | 领域情报网
    • 编译者:lifs
    • 发布时间:2020-08-07
    •  8月3日,中国科学院青藏高原所湖泊与环境变化团队首次在青藏高原纳木错中心湖区近百米水下成功获取144.79米岩芯,钻探深度达153.44米,超过此前我国高原湖泊的最大钻探深度(114.9米),此次钻取的岩芯有望重建近15万年连续气候环境记录。   研究人员介绍,通过湖泊岩芯指标重建末次间冰期以来气候旋回及特征事件,对理解长时间尺度下西风-季风协同作用具有重要意义。   地处青藏高原腹地的纳木错湖面海拔约4730米,在此区域开展岩芯钻取工作,天气是最大的挑战。   钻探工作自2019年7月1日正式启动,钻取近20米岩芯,由于天气技术等多种原因被迫暂停。今年7月1日,钻探工作再次启动,湖泊与环境变化团队联合钻探公司进行技术攻关,面对纳木错水深浪大的环境,逐一解决了水上钻探平台不稳定、套管难固定等关键技术难题。通过4个200多公斤的加重锚和卷扬机拉紧锚绳,最终将81平方米的大型钻探平台在湖面牢牢固定。2020年8月3日下午18点45分,本次纳木错钻探成功完成既定目标,表明我国已经能够利用自主研发技术在深水区域获得长尺度、高取芯率的湖泊岩芯。   中国科学院青藏高原所湖泊与环境变化团队负责人朱立平研究员表示,本次144.79米岩芯的成功获取,为实施国际大陆科学钻探计划(ICDP)积累了成功经验,不仅从技术上提高了钻探水平,为今后高水平研究奠定了基础,提高了中国科学家在合作项目中的话语权。   纳木错钻探项目负责人、中国科学院青藏高原所湖泊与环境变化团队王君波研究员介绍,第二次青藏科考启动以来,依托中国科学院纳木错多圈层综合观测研究站,团队以纳木错、色林错等藏北高原的深水大湖为主要研究区域,取得了大量第一手湖泊观测资料,开展了亚洲水塔水资源变化及对气候变化的响应、气候变化背景下亚洲水塔变化趋势及古环境变化等观测和研究,本次纳木错长岩芯钻探是我们的重点攻关课题。   据了解,中国科学院纳木错多圈层综合观测研究站是第二次青藏科考“两江两湖”区域重要的科考基地。该观测研究站已对纳木错持续开展15年观测研究,在此基础上,中国科学院青藏高原所湖泊与环境变化团队联合德国等多国科学家共同申请的纳木错ICDP项目于2020年6月正式获批,该项目计划在纳木错钻取5个点位共计2250米长的沉积物(其中单孔设计最深为700米),用于研究过去一百万年以来第三极地区的气候环境状况。 纳木错中心湖区水上钻探平台 8月3日,我国科学家成功在青藏高原湖泊钻取最长岩芯。