《华南植物园等揭示风电场对生态系统功能的潜在影响及驱动机制》

  • 来源专题:生物育种
  • 编译者: 季雪婧
  • 发布时间:2023-11-24
  •     为应对由化石燃料排放引起的气候变化,风能作为最为清洁的绿色能源之一,在全球范围内被广泛推广。在风电场的规模在地理空间上不断扩大的过程中,风电场对区域气候的影响可能放大,并进一步改变生态系统碳循环过程。尽管风电场对于区域气候的影响已被证实,但对区域生态系统碳循环的影响的研究尚不清楚。

        中国科学院华南植物园联合国内外的科研机构,选择中国北方草地为研究区,基于多源遥感数据,发现了大规模风电场降低草地的植被生产力和碳汇总量。研究显示,在风电产生的同时,风力涡轮机转子旋转产生的湍流改变了大气中热量和水汽的垂直交换,进而对局地气候产生影响。本研究基于气候观测数据的分析进一步提出,由风电机引起的热量和水汽垂直交换导致区域大气水汽压差(VPD)增加,即大气干旱加剧。大气干旱现象被证明是大规模风电场抑制植被的生长和生产力进而降低生态系统碳汇功能的主要原因。

        该研究创新性地将风能与生态系统功能联系在一起,揭示了大规模风电场对区域碳循环的影响和驱动机制,并强调了在全球风能产业快速发展过程中评估其对生态系统影响的重要意义。

        华南植物园在可再生能源生态学研究方面取得了进展,揭示了大规模风电场对草地生态系统功能的潜在影响及驱动机制。相关研究成果以Observed?impacts of large wind farms on grassland carbon cycling为题,发表在《科学通报》(Science Bulletin)上。研究工作得到广东省重点领域研发计划和国家自然科学基金等的支持。

  • 原文来源:https://www.cas.cn/syky/202311/t20231124_4988264.shtml
相关报告
  • 《研究揭示多维生物多样性对森林生态系统功能的影响机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:xxw
    • 发布时间:2019-07-16
    • 全球变化(包括气候变化、土地利用和地表覆盖变化)和人类活动等导致了生物多样性的加速丧失,进而影响了生态系统的服务功能。近年来,生物多样性对生态系统功能的影响机制受到广泛关注,是生物多样性和生态学研究领域的热点问题。大量关于生物多样性与生态系统功能关系的研究表明,生物多样性是生态系统功能的主要驱动力,但以往的研究主要集中在草地生态系统。森林作为陆表最重要的生态系统,在调节全球碳循环、减缓气候变化、维持生态系统服务功能中发挥着不可或缺的作用。在自然森林群落中,群落结构远比草地生态系统复杂。除了乔木树种外,林下的灌木和草本具有高的物种多样性和重要的生态系统功能,但是,还缺乏将森林群落的乔木、灌木和草本多个层次的整合研究。森林群落中配置于不同垂直层的物种在进化历史、功能策略等方面存在较大差异,导致群落的构建机制可能不同。同时,将空间尺度纳入其中综合考虑时,多维(multi-dimension)生物多样性,包括物种多样性、系统发育多样性和功能多样性与生态系统功能之间的关系尚不清楚,其潜在的驱动机制也有待深入研究。 云南西北部地处我国三大河流(怒江、澜沧江和金沙江)的上游,区域内有三江并流世界自然遗产地和众多的自然保护区。由于其复杂的地质、气候历史和多样的地形地貌,造就了其富有特色的生物多样性。该地区位于全球生物多样性的热点地区“中国西南山地”的核心区域,是气候变化最为敏感和脆弱的地区之一。玉龙雪山沿海拔梯度存在多种气候类型,植物种类繁多,呈现出较为完整的山地植物垂直带谱,是滇西北植物多样性的缩影,也是我国重要的生态安全屏障,具有重要的生态系统服务功能。区域内的森林群落垂直结构明显,林下拥有丰富的植物多样性,为研究森林生态系统功能提供了天然的场所。中国科学院昆明植物研究所植物多样性演化和生态适应团队高连明研究组和植物多样性与基因组学团队李德铢研究组依托丽江森林生态系统定位研究站,于2013年开始,在丽江玉龙雪山建立了沿海拔梯度的森林群落样带,旨在开展全球变化生态学和群落生态学研究,以期揭示自然状态下真实的森林生物多样性与生态系统功能的关系。 最近,该团队与加拿大多伦多大学教授Marc Cadotte、美国哥伦布大学教授Kevin Burgess合作,以玉龙雪山沿海拔梯度样带为平台,综合多维生物多样性(物种多样性、系统发育多样性和功能多样性)和森林垂直结构(乔木、灌木和草本)研究了不同空间尺度(邻体尺度和样方尺度)下生物多样性对生态系统功能(地上生物量)的影响。研究发现,乔木的地上生物量与群落性状组成(高度和叶片磷含量)和功能多样性(比叶面积)呈正相关关系,暗示选择效应和生态位互补效应均为主导因素。乔木的地上生物量并未显着降低林下植物的地上生物量,而灌木的生物量与种子大小的多样性或多性状综合的功能多样性相关联;草本植物的地上生物量则主要受系统发育多样性和物种多样性的影响,表明互补效应在林下的群落中扮演重要角色。海拔梯度主要通过物种多样性、系统发育多样性和功能多样性对生物量产生间接影响。在全球变化背景下,该研究结果有助于科学支撑森林生物多样性的保护和管理。随着空间尺度的增大,多样性与生态系统功能之间的相关性呈上升的趋势,暗示在更大的空间尺度上,生物多样性与生态系统功能之间的关系可能更为紧密。因此,在山地森林生态系统实施天然林保护或者人工林建设中,不仅要考虑乔木树种的多样性,林下的灌木和草本作为独特的系统也需要纳入生态系统服务功能的考量中。该研究对于森林生态系统修复和天然林保护具有重要的指导意义。 研究成果以Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function 为题在国际生态学期刊Ecology Letters 在线发表。在站博士后罗亚皇为论文第一作者,合作导师高连明和李德铢为共同通讯作者。该研究得到中国科学院战略性先导科技专项 (XDB31000000)、国家自然科学基金(31800354)、国家博士后基金(2017M623082)、云南省科技领军人才项目(2017HA014)和云南省博士后定向培养项目的资助。该研究同时得到中西南野生生物种质资源库分子生物学平台的支持。
  • 《武汉植物园在揭示继发性入侵机制和动态变化的研究中取得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-03-22
    •   继发性入侵是指成功控制或根除目标入侵植物后,其他非目标入侵植物占据空生态位,形成入侵的现象。继发性入侵会使生态系统再度面临入侵植物的威胁,致使入侵植物防治失败。然而,继发性入侵的潜在机制以及动态变化过程尚不清楚。   中国科学院武汉植物园入侵生态学科组以恶性入侵植物豚草(Ambrosia artemisiifolia)作为目标入侵植物,以广聚萤叶甲(Ophraella communa)作为豚草的生防昆虫,并选取14种与豚草共存的恶性入侵植物为非目标入侵植物,同时选取4种常见的本地植物构建群落,开展生物防治的同质园控制实验。研究发现,在生物防治目标入侵植物豚草后,非目标入侵植物的继发性入侵普遍存在,且具有明显物种特异性。但是,随着防治时间推移非目标入侵植物的入侵性而不断变化。防治早期:继发性入侵主要由目标和非目标入侵植物之间的系统发育关系决定;防治后期,则由非目标入侵植物自身生长繁殖性状(如比叶面积、叶片干物质含量、株高、种子重量等)所决定。   该研究首次将系统发育相关性和植物性状等入侵生态学相关理论结合,为了解入侵植物防治后的继发性入侵机制与动态,以及提高入侵植物生物防治效率提供新的见解,同时也为预测入侵植物防治后的继发性入侵物种提供理论和实践指导。   研究成果以“Dynamics and mechanisms of secondary invasion following biological control of an invasive plant”为题,在植物学期刊New Phytologist发表。入侵生态学科组博士生沈常超为论文的第一作者,黄伟研究员和陶至彬助理研究员为论文的通讯作者。该研究得到了国家自然科学基金(31822007,32071660)以及湖北省自然科学基金(2020CFA064)的资助。