《盘点航空航天领域3类典型材料及应用挑战!》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-03-11
  • 航空航天是当今世界科技强国竞相发展的重点方向之一,其发展离不开兼具轻量化、难加工、高性能等特征的金属构件。激光增材制造为高性能金属构件的设计与制造开辟了新的工艺途径,可解决航空航天等领域发展过程中对材料、结构、工艺、性能及应用等提出的新挑战。

    《中国激光》编委、南京航空航天大学材料科学与技术学院顾冬冬教授撰写《航空航天高性能金属材料构件激光增材制造》的长篇综述论文,系统论述了航空航天领域3类典型材料、4类典型结构的激光增材制造及航空航天应用进展,并对激光增材制造技术在材料-结构-工艺-性能一体化方向进行了总结和展望。本期,我们将对综述内容材料部分的重点内容进行摘编介绍。

    激光增材制造铝合金及铝基复合材料

    铝合金及铝基复合材料对于激光增材制造是典型的难加工材料,这是由其特殊的物理性质(低密度、低激光吸收率、高热导率及易氧化等)决定的。从增材制造工艺角度看,铝合金的密度较小,粉体流动性相对较差,在SLM成形粉床上铺放的均匀性较差或在LMD过程中粉末输运的连续性较差,故对激光增材制造装备中铺粉/送粉系统的精度及准确性要求较高。

    相对于钛基、镍基等对SLM和LMD两种工艺表现出的广泛适用性,铝基材料激光增材制造的研究工作及应用验证较多集中在SLM工艺上。目前基于SLM成形的铝合金及铝基复合材料达10余种,且多为Al-Si系,此类合金因其铸造铝合金的材料本质,即便采用优化工艺制备,抗拉强度也很难突破400MPa,从而限制了其在具有较高服役性能要求的航空航天承力构件上的使用。

    "

    激光增材制造铝合金及其复合材料的力学性能

    为获得更高的力学性能,近年来Al-Cu、Al-Mg和Al-Zn等体系也被用作SLM成形材料,但这类铝合金中较高的合金元素含量和较宽的冷却凝固温度范围,使得沉淀强化合金在激光增材制造过程中易形成裂纹甚至发生开裂;且相对于铝元素,镁和锂等元素更易在高能激光的高温作用下发生气化蒸发,从而影响成形件的成分稳定性及力学性能。因此,对于激光增材制造高强铝合金而言,成分、物性参数、相变的设计及调控尤为重要。近年来,人们设计了专门面向激光增材制造的稀土元素钪改性增强的Al-Mg-Sc-Zr合金粉末,经增材制造并辅以适当的热处理工艺,其综合力学性能可显著提升(抗拉强度高于500MPa,延伸率超过10%)。

    制备铝基复合材料是铝合金强韧化的重要途径。铝基复合材料兼具轻合金与陶瓷、纤维等增强体的优良特性,具有高的比强度、比模量及体积稳定性,并具有耐高温、抗磨损及抗氧化等优异的性能以及材料可设计性。激光增材制造铝基复合材料在选材上突出“多相材料可设计性”,在增材制造工艺上强调“高可控性”,在使用成效上则凸显“高性能/多功能”,这也代表了增材制造技术的重要发展方向。纳米陶瓷增强和原位陶瓷增强可有效改善陶瓷/金属界面的润湿性及结合性,抑制界面上的微观孔隙及裂纹,提升激光成形件的力学性能。

    激光增材制造钛合金及钛基复合材料

    钛基材料因具有优异的比强度、耐蚀性和生物相容性而被广泛应用于航空航天、生物医疗、食品化工等领域,是增材制造领域经常采用的材料。目前激光增材制造钛基合金的挑战在于:

    (1 )激光增材制造成形完全致密的复杂结构钛基构件尚存在难度,成形过程中构件易产生气孔、裂纹及表面球化等加工缺陷,这些加工缺陷往往会成为绝热剪切带和裂纹萌生源,降低成形件的力学性能和服役性能。

    (2 )激光增材制造过程中极大的冷却速度和温度梯度将诱发马氏体相变,使构件内部产生较大的残余应力;随着加工层数增加,残余应力逐渐增大,从而导致热裂纹形成,并且成形件易发生翘曲,这种加工缺陷积累至一定程度时会导致成形件发生开裂,并严重降低零件的塑性和韧性。

    (3 )在激光加工过程中,热流主要沿着平行于增材制造的方向传导,易形成粗大的柱状晶组织,从而导致构件的显微组织和力学性能具有很强的各向异性。

    "

    激光增材制造钛及钛合金的力学性能

    钛基材料对SLM和LMD两类激光增材制造工艺均表现出了较强的适用性。目前用于激光增材制造的钛合金主要集中在工业纯钛(CP-Ti)及TC4等传统钛基材料上。激光增材制造构件的显微组织调控是其力学性能提升的基础,组织演变又受控于工艺,故高性能构件激光增材制造需要建立材料-组织-工艺-性能的一体化调控理论及方法。

    由于激光增材制造过程中熔池的冷却速度较快,且沿着增材制造方向具有较大的温度梯度,故而钛合金的凝固组织往往呈柱状晶结构,导致了成形件力学性能的各向异性。为改善钛合金激光增材制造过程中产生的各向异性,提高力学性能,可从材料设计(如合金化)和工艺优化(如施加复合能场)两方面加以改进。

    除了合金化的思路来研发激光增材制造新型钛合金外,制备陶瓷增强钛基复合材料也是提升钛基构件力学性能的重要手段。钛具有很强的化学活性,激光增材制造过程中钛组元易与其他组元发生原位化学反应,显著增大了激光成形材料物相和组织的调控难度,故对于钛基复合材料陶瓷增强相的选择上需慎重。

    激光增材制造镍基高温合金及其复合材料

    镍基高温合金自身含有较多的合金元素,其在激光增材制造过程中普遍存在裂纹敏感性强、元素偏析严重、显微组织各向异性显著、力学性能可控性差等问题。一方面,镍基合金中亲氧能力较强的铬、铝元素易在高温作用下与成形气氛中的氧元素发生作用,形成微细氧化物夹渣,然其与基体界面间的润湿性较差,从而导致裂纹产生并降低力学性能;另一方面,碳、铌、钼等元素易在晶界聚集,显著增加低熔点共晶相的含量,加剧了热影响区热裂纹的形成。此外,各类晶界析出物会消耗镍基体中的强化相形成元素,显著降低激光增材制造镍基构件的力学性能。

    当前,镍基高温合金激光增材制造主要集中在Inconel系列合金上,其中沉淀强化型Inconel718和固溶强化型Inconel625的可焊接性强,亦适用于基于粉末熔化/凝固冶金过程的激光增材制造工艺。激光增材制造镍基高温合金的显微组织调控主要是通过优化工艺参数进而改变熔池的温度梯度、凝固速度和冷却速率来实现的,然后结合后续的热处理工艺来实现晶粒形状、尺寸以及析出相形态、含量及分布的调控。此外,采用优化的激光扫描策略也可改变晶粒的生长织构,获得高强韧镍基合金材料。

    "

    激光增材制造镍基高温合金及其复合材料的力学性能

    热处理可实现激光增材制造镍基高温合金的强化,但会在一定程度上牺牲材料的韧性;同时,后处理需要合理调控加热温度、保温时间、冷却介质及热等静压的压力等参数,成本较高,工艺较复杂,缺陷形成概率也较大。基于高温高压处理的热等静压(HIP)技术可以消除激光增材制造镍基高温合金构件中的残余孔隙,抑制裂纹萌生及扩展,进而提高成形件的力学性能。

    制备陶瓷增强镍基复合材料是镍基高温合金力学性能提升的另一个重要途径,可使复合材料在韧性不降低的前提下具有更高的比强度、比刚度及耐热性。

    总结

    总的来说,以铝、钛合金为代表的轻质高强合金,以及以Ni基高温合金为代表的承载耐热合金,是各国新材料研发计划中重点发展的材料之一,也是激光增材制造中重要的应用材料。关于增材制造材料研发的特点可以归纳为三点:

    (1)研制新型高性能材料是激光增材制造构件力学性能及应用水平提升的基础保障;

    (2)纳米复合、原位增强及梯度界面设计是提升传统金属激光增材制造强韧化的有效途径;

    (3)激光增材制造工艺调控及技术创新是金属构件显微组织改善及性能提升的根本手段。

相关报告
  • 《详细盘点2020年国外航空航天领域用复合材料的最新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-27
    • 进入2020年以来,国外在航空航天领域用复合材料又有了系列新进展,航空领域如美国陆军未来攻击侦察机,航天领域包括英国商业火箭计划、美国空间可展开结构项目及今年7月即将进行的火星登录计划。为此小编将带来近期尤其是2020年以来,国外在航空航天领域用复合材料最新进展。 01 复合材料使陆军未来攻击侦察机(FARA)的性能提升 美国陆军未来攻击侦察机(Future Attack Reconnaissance Aircraft,简写FARA)已进入西科斯基公司的RAIDER X的原型机阶段,该机基于S-97型RAIDER并采用了复合材料机身。 FARA将飞入要求苛刻且竞争激烈的环境中,因此它必须具备出色的垂直升力,这是美国陆军六大现代化优先任务之一,而且必须具有坚韧和快速的性能。西科斯基公司的RAIDER X是一种快速、灵活、可生存的复合同轴直升机,它提供了陆军所需的关键部件,包括机动性、高巡航速度、紧凑的占地面积和高热悬停(在高海拔和高温下的悬停能力)。 作为陆军未来垂直升力追踪的一部分,RAIDER X被选中进入FARA竞争性原型项目的第二阶段,因此西科斯基将继续研究RAIDER X原型,为飞行测试项目做准备。基于西科斯基s-97型掠袭机的“掠袭者X”将受益于s-97的X2技术,该技术结合了刚性、对转叶片、电传飞行控制和综合辅助推进系统。洛克希德马丁公司将提供从数字设计到任务系统的服务。 为了满足S-97的严格要求,西科斯基与包括旋转复合材料技术公司、Hexcel公司和鹰航空技术公司合作。直升机机身由复合材料制成,在极端条件下提供所需的重量、强度和韧性。“X2的力量正在改变游戏规则。它结合了低速直升机性能的最佳元素和飞机的巡航性能,”西科斯基实验试飞员比尔·法尔说,他是一名退役的陆军飞行员。“我们今天乘坐的S-97突袭机的每一次飞行都降低了风险,优化了我们的FARA原型RAIDER X。”西科斯基还将继续致力于X2技术计划,作为RAIDERX项目的一部分。 02 碳纤维增强铝基复合材料推动商业轨道火箭飞速发展 总部位于英国的私人低成本轨道发射服务公司Orbex正在制造商用轨道火箭Prime,它由轻质碳纤维和铝复合材料的优化混合加工而成,与同尺寸型号火箭相比,重量下降了30%。 Orbex公司为未来几年制定了系列宏伟计划,包括从尚未建成的太空港(spaceport)发射小型卫星,并在2022年为新客户TriSept发起专门的特别发射任务。实现这些崇高目标的关键是Orbex的Prime,这是一种轨道火箭,由碳纤维和铝复合材料的优化混合物制成。 Orbex在其苏格兰总部安装了高速碳纤维缠绕机。公司官员解释说:“这台18米长的机器可以自动完成复杂混合物的快速编织,从而制造出主要的火箭结构。”还安装了一个全尺寸的高压灭菌釜,从而能够处理大型火箭零件,例如一级燃料箱等,这些零件已准备好应对太空中的极端环境,包括承受高达500倍大气压的巨大压力。 由于采用了碳纤维增强铝基复合材料,每枚Orbex Prime火箭的重量仅为1.5吨,比相同尺寸的火箭轻30%,并且能在60秒内从0加速到1,330 km / h。Orbex Prime火箭发动机采用3D打印技术一体制造,从而消除了因连接而产生缺陷的风险。Prime由生物丙烷提供燃料,与煤油基火箭燃料相比,该生物燃料燃烧干净,可减少90%的碳排放。Orbex火箭的设计可重复使用,不会留下轨道碎片。 Orbex首席执行官Chris Larmour表示:“我们正在以前所未有的方式制造火箭……NewSpace(参与太空飞行的私营企业)的重点是提供更快、更好和更便宜的太空通道。在机器人装配线上花费数亿美元或雇用数以千计的员工来生产重型金属火箭是一种过时的方法。建立现代太空业务意味着更新制造精神,使其更快、更敏捷、更灵活。这就是我们在Orbex所做的。” 03 美国宇航局资助加速复合材料可展开结构设计项目 隶属于美国普渡大学的商业软件供应商AnalySwift有限责任公司获得了美国宇航局(NASA)的一笔拨款,将用于进一步开发其SwiftComp软件,该软件为高应变复合材料制成的可展开结构提供高效、高保真的建模技术。 AnalySwift LLC从NASA获得了125000美元的小企业技术转让(STTR)赠款,以帮助其进一步开发SwiftComp软件。这项技术是由普渡大学工程学院航空航天学教授余文斌开发的。该公司从普渡大学研究基金会技术商业化办公室获得技术许可。 AnalySwift总裁兼首席执行官艾伦•伍德(Allan Wood)解释道:“Swift Comp将材料和结构的基本组成部分的细节作为输入,然后输出宏观分析所需的结构特性。它可用于组合梁、板和壳,以及三维结构,用于微观力学和结构建模。” ”除了可展开的复合材料吊杆,NASA还可以找到该软件的其他用途,包括在太空环境中的活体容器和可折叠面板、卫星巴士、漫游车、天线等。也可以用于飞机的柔性机翼和垂直升降飞机的结构。该软件还获得了卫星和移动电话部件(包括印刷电路板)的使用许可。 04 复合材料航空壳将为美国“流浪者号”火星探测器提供保护 洛克希德·马丁公司(Lockheed Martin)使用平铺的酚醛浸渍碳消融剂(PICA)热保护系统开发了一种隔热板,以保护火星探测器2020Rover流浪者在进入火星表面、降落和着陆过程中免受强烈的热量。 NASA今年将开展前往火星的任务,这将是该行星有史以来最具挑战性的进入、下降和着陆(EDL)序列之一,因为火星车将降落在一个充满巨石和沙丘的地区。整个旅程将花费近七个月的时间,而火星车预计将在火星表面停留两年。 洛克希德·马丁公司的机壳是直径最大约15英尺的有史以来最大的用于行星飞行的飞机,其设计目的是保护流动站免受EDL期间高达3800华氏度的温度影响。机壳(隔热罩和后壳的组合)由夹在M55J高模量碳纤维-环氧树脂面板之间的铝蜂窝结构组成,并通过九个弹簧分离机构固定在一起。 隔热罩使用平铺的酚醛浸渍碳烧蚀剂(PICA)热保护系统来防止灼热。隔热罩的空气动力学特性还可以起到“刹车”的作用,当航天器以接近12,000 mph的速度进入火星稀薄的大气层时,有助于减慢航天器的速度。 “即使我们有为好奇号流浪者建造几乎相同的航空器外壳的经验,直径近15英尺的复合材料结构在10年后的建造和测试中也面临着同样的挑战,” Mars 2020航空器外壳项目经理尼尔·蒂斯说。“我们已经为NASA探索火星40年来建造了每个火星航空器进入系统,因此我们从这一经验中汲取了宝贵经验,以构建这一重要系统。”洛克希德·马丁公司(Lockheed Martin)最近将火星2020火星探测器的机体交付给了发射场,即美国宇航局在佛罗里达州的肯尼迪航天中心。“火星2020”火星车正在加利福尼亚州帕萨迪纳市NASA的喷气推进实验室进行测试,该任务将于2020年7月发射,并于2021年2月在Jezero陨石坑降落在火星上。
  • 《详细盘点2020年国外航空航天领域用复合材料的最新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-04-28
    • 进入2020年以来,国外在航空航天领域用复合材料又有了系列新进展,航空领域如美国陆军未来攻击侦察机,航天领域包括英国商业火箭计划、美国空间可展开结构项目及今年7月即将进行的火星登录计划。为此小编将带来近期尤其是2020年以来,国外在航空航天领域用复合材料最新进展。 01 复合材料使陆军未来攻击侦察机(FARA)的性能提升 美国陆军未来攻击侦察机(Future Attack Reconnaissance Aircraft,简写FARA)已进入西科斯基公司的RAIDER X的原型机阶段,该机基于S-97型RAIDER并采用了复合材料机身。 FARA将飞入要求苛刻且竞争激烈的环境中,因此它必须具备出色的垂直升力,这是美国陆军六大现代化优先任务之一,而且必须具有坚韧和快速的性能。西科斯基公司的RAIDER X是一种快速、灵活、可生存的复合同轴直升机,它提供了陆军所需的关键部件,包括机动性、高巡航速度、紧凑的占地面积和高热悬停(在高海拔和高温下的悬停能力)。 作为陆军未来垂直升力追踪的一部分,RAIDER X被选中进入FARA竞争性原型项目的第二阶段,因此西科斯基将继续研究RAIDER X原型,为飞行测试项目做准备。基于西科斯基s-97型掠袭机的“掠袭者X”将受益于s-97的X2技术,该技术结合了刚性、对转叶片、电传飞行控制和综合辅助推进系统。洛克希德马丁公司将提供从数字设计到任务系统的服务。 为了满足S-97的严格要求,西科斯基与包括旋转复合材料技术公司、Hexcel公司和鹰航空技术公司合作。直升机机身由复合材料制成,在极端条件下提供所需的重量、强度和韧性。“X2的力量正在改变游戏规则。它结合了低速直升机性能的最佳元素和飞机的巡航性能,”西科斯基实验试飞员比尔·法尔说,他是一名退役的陆军飞行员。“我们今天乘坐的S-97突袭机的每一次飞行都降低了风险,优化了我们的FARA原型RAIDER X。”西科斯基还将继续致力于X2技术计划,作为RAIDERX项目的一部分。 02 碳纤维增强铝基复合材料推动商业轨道火箭飞速发展 总部位于英国的私人低成本轨道发射服务公司Orbex正在制造商用轨道火箭Prime,它由轻质碳纤维和铝复合材料的优化混合加工而成,与同尺寸型号火箭相比,重量下降了30%。 Orbex公司为未来几年制定了系列宏伟计划,包括从尚未建成的太空港(spaceport)发射小型卫星,并在2022年为新客户TriSept发起专门的特别发射任务。实现这些崇高目标的关键是Orbex的Prime,这是一种轨道火箭,由碳纤维和铝复合材料的优化混合物制成。 Orbex在其苏格兰总部安装了高速碳纤维缠绕机。公司官员解释说:“这台18米长的机器可以自动完成复杂混合物的快速编织,从而制造出主要的火箭结构。”还安装了一个全尺寸的高压灭菌釜,从而能够处理大型火箭零件,例如一级燃料箱等,这些零件已准备好应对太空中的极端环境,包括承受高达500倍大气压的巨大压力。 由于采用了碳纤维增强铝基复合材料,每枚Orbex Prime火箭的重量仅为1.5吨,比相同尺寸的火箭轻30%,并且能在60秒内从0加速到1,330 km / h。Orbex Prime火箭发动机采用3D打印技术一体制造,从而消除了因连接而产生缺陷的风险。Prime由生物丙烷提供燃料,与煤油基火箭燃料相比,该生物燃料燃烧干净,可减少90%的碳排放。Orbex火箭的设计可重复使用,不会留下轨道碎片。 Orbex首席执行官Chris Larmour表示:“我们正在以前所未有的方式制造火箭……NewSpace(参与太空飞行的私营企业)的重点是提供更快、更好和更便宜的太空通道。在机器人装配线上花费数亿美元或雇用数以千计的员工来生产重型金属火箭是一种过时的方法。建立现代太空业务意味着更新制造精神,使其更快、更敏捷、更灵活。这就是我们在Orbex所做的。” 03 美国宇航局资助加速复合材料可展开结构设计项目 隶属于美国普渡大学的商业软件供应商AnalySwift有限责任公司获得了美国宇航局(NASA)的一笔拨款,将用于进一步开发其SwiftComp软件,该软件为高应变复合材料制成的可展开结构提供高效、高保真的建模技术。 AnalySwift LLC从NASA获得了125000美元的小企业技术转让(STTR)赠款,以帮助其进一步开发SwiftComp软件。这项技术是由普渡大学工程学院航空航天学教授余文斌开发的。该公司从普渡大学研究基金会技术商业化办公室获得技术许可。 AnalySwift总裁兼首席执行官艾伦•伍德(Allan Wood)解释道:“Swift Comp将材料和结构的基本组成部分的细节作为输入,然后输出宏观分析所需的结构特性。它可用于组合梁、板和壳,以及三维结构,用于微观力学和结构建模。” ”除了可展开的复合材料吊杆,NASA还可以找到该软件的其他用途,包括在太空环境中的活体容器和可折叠面板、卫星巴士、漫游车、天线等。也可以用于飞机的柔性机翼和垂直升降飞机的结构。该软件还获得了卫星和移动电话部件(包括印刷电路板)的使用许可。 04 复合材料航空壳将为美国“流浪者号”火星探测器提供保护 洛克希德·马丁公司(Lockheed Martin)使用平铺的酚醛浸渍碳消融剂(PICA)热保护系统开发了一种隔热板,以保护火星探测器2020Rover流浪者在进入火星表面、降落和着陆过程中免受强烈的热量。 NASA今年将开展前往火星的任务,这将是该行星有史以来最具挑战性的进入、下降和着陆(EDL)序列之一,因为火星车将降落在一个充满巨石和沙丘的地区。整个旅程将花费近七个月的时间,而火星车预计将在火星表面停留两年。 洛克希德·马丁公司的机壳是直径最大约15英尺的有史以来最大的用于行星飞行的飞机,其设计目的是保护流动站免受EDL期间高达3800华氏度的温度影响。机壳(隔热罩和后壳的组合)由夹在M55J高模量碳纤维-环氧树脂面板之间的铝蜂窝结构组成,并通过九个弹簧分离机构固定在一起。 隔热罩使用平铺的酚醛浸渍碳烧蚀剂(PICA)热保护系统来防止灼热。隔热罩的空气动力学特性还可以起到“刹车”的作用,当航天器以接近12,000 mph的速度进入火星稀薄的大气层时,有助于减慢航天器的速度。 “即使我们有为好奇号流浪者建造几乎相同的航空器外壳的经验,直径近15英尺的复合材料结构在10年后的建造和测试中也面临着同样的挑战,” Mars 2020航空器外壳项目经理尼尔·蒂斯说。“我们已经为NASA探索火星40年来建造了每个火星航空器进入系统,因此我们从这一经验中汲取了宝贵经验,以构建这一重要系统。”洛克希德·马丁公司(Lockheed Martin)最近将火星2020火星探测器的机体交付给了发射场,即美国宇航局在佛罗里达州的肯尼迪航天中心。“火星2020”火星车正在加利福尼亚州帕萨迪纳市NASA的喷气推进实验室进行测试,该任务将于2020年7月发射,并于2021年2月在Jezero陨石坑降落在火星上。