《昆明动物所发现动物禁食中孔道形成蛋白驱动脂类营养输送》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2022-10-31
  •       自然界中的动物由于生存环境的季节性变化而经历不同程度的营养缺乏过程。在饥饿状态和向组织实质细胞输送脂质产物时,从脂肪组织释放到血液中的脂肪酸可以与白蛋白结合,经由内皮细胞的跨细胞运输被组织实质细胞吸收,从而实现能量供应。然而,白蛋白和/或白蛋白结合的脂肪酸的细胞摄取和外排的方式和机制是目前有待解决的重要科学问题。

      细胞膜系统是维持细胞与外界物质交流、环境适应的屏障,因此在进化过程中也产生了作用于细胞膜系统的孔道形成蛋白。但是,长期以来孔道形成蛋白被认为是细胞死亡的诱导剂,主要作为微生物感染的毒力因子或宿主的免疫效应分子。中国科学院昆明动物研究所研究员张云课题组在长期对两栖类动物大蹼铃蟾Bombina maxima的研究中发现了孔道形成蛋白βγ-CAT,并揭示该蛋白机器受氧分压的精准调控组装。βγ-CAT可以通过刺激驱动胞饮作用和外泌体的释放来维持蛙类水平衡。在大量实验证据基础上,该团队总结提出了以βγ-CAT及其调控网络为代表的驱动细胞囊泡化输送的新型孔道形成蛋白系统,及该创新性系统作用于营养吸收和代谢调控的新范式。

      研究团队进一步揭示该创新性驱动细胞囊泡化输送的孔道形成蛋白系统在大蹼铃蟾B.maxima血液里呈常态化表达,约占血液蛋白成分含量的千分之一,是动物禁食的及时响应因子,此类蛋白具有驱动大分子脂类营养物质跨内皮细胞输送、为肌细胞提供营养的重要功能。相关研究成果以Pore-forming protein βγ-CAT promptly responses to fasting with capacity to deliver macromolecular nutrients为题发表在FASEB Journal上。由于βγ-CAT孔道形成蛋白系统介导了基础的细胞物质摄取和输送功能及其调控的细胞膜活性分子基础,可以理性预测:类似功能与机制的孔道形成蛋白系统在鱼类、两栖爬行动物、鸟类和哺乳动物中具有相应的保守性和普适性。

  • 原文来源:http://www.cas.ac.cn/syky/202209/t20220923_4848686.shtml
相关报告
  • 《昆明动物所发现云南鳅属鱼类新种》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-09-10
    • 云南鳅属隶属于鲤形目、条鳅科,分布于中国的四川、云南、广西和贵州省,国外分布于缅甸和越南。它们是一群生活于湖泊、沼泽和缓慢流动的河流中的小型淡水鱼类。目前云南鳅属记录有34种,根据其是否具有头部侧线管孔和侧线孔将其分为侧纹云南鳅种组(有侧线孔和头部侧线管孔)和黑斑云南鳅种组(无侧线孔和头部侧线管孔)。 2017年四川成都的鱼类爱好者在四川彭州市九尺县沱江支流采集到云南鳅标本9号。中国科学院昆明动物研究所与四川师范大学的科研人员联合对该批标本进行了鉴定,发现该标本体侧具有侧线孔、头部有侧线管孔,因此,属于侧纹云南鳅种组。将该标本与侧纹云南鳅种组的其它种进行比较,发现为云南鳅属的一新种,且为四川省记录的云南鳅属种类的第二种。 该新种被命名为九尺云南鳅,它所具有的鉴别特征是:上颌无齿状突起;全身被有细密的鳞片;侧线不完全,终止于胸鳍一半的下方,具有6-11个侧线孔;眼径大于眼间隔;尾柄长小于尾柄高。相关研究成果已发表于Zootaxa杂志。 云南鳅属鱼类对水质污染比较敏感,是重要的水质变化指示鱼类。云南鳅属种类多局限分布于一些小型水体中,水质的变化对其影响较大。目前,已经有8种云南鳅属鱼类被世界自然保护联盟(IUCN)评估为濒危物种。 丁陈君 摘编自http://www.cas.cn/syky/201812/t20181227_4675227.shtml 原文标题:研究发现云南鳅属鱼类新种——九尺云南鳅
  • 《昆明植物所发现了一个新颖的参与植物抗虫的Kunitz型的胰蛋白酶抑制基因》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-04-28
    • 昆虫和动物通过分泌胰蛋白酶来消化食物,从而能够吸收重要的营养物质-蛋白质。很多植物受到啃食的时候,特别是茄科植物和豆科植物,会积累高水平的胰蛋白酶抑制剂活性来抵御昆虫和食草动物。这些高水平的胰蛋白酶抑制剂活性是来自一个,还是多个基因编码的蛋白?这些蛋白基因的调控方式是否一样?如果不一样,有哪些调控方式?这些都是植物抗虫领域的重要科学问题。   中国科学院昆明植物研究所植物次生代谢分子调控专题攻关组以渐狭叶烟草为模式,结合了转录组分析、基因沉默和超表达、以及蛋白活性研究手段,在2021年发现了一个Kunitz型的胰蛋白酶抑制基因NaKTI2(Yin et al., 2021 Plant Cell Reports)。今年又发现了一个新的Kunitz型的胰蛋白酶抑制剂基因NaMLP。   昆明植物园扶荔宫中的明星植物神秘果树以其果实中能合成一种特殊的蛋白质-神秘果素(miraculin)而闻名。吃了神秘果半小时到两小时内,舌头上的敏酸味蕾暂时被神秘果素抑制,而对甜味敏感的味蕾感受器却活跃起来,这时再吃酸性水果,只会感受到甜味。20世纪60年代,周恩来总理访问西非时,加纳共和国的领导人把神秘果树作为礼物赠与总理。研究人员注意到NaMLP这个基因是因为它的表达能被昆虫的口水和链格孢菌的感染高水平的诱导,而且这个基因编码的蛋白和神秘果素有较高的氨基酸序列相似性,因此它被命名为类似神秘果素蛋白(NaMLP;miraculin-like protein)。     研究人员进一步的研究发现,尽管NaMLP蛋白的氨基酸序列和已知的Kunitz型胰蛋白酶抑制剂的序列相似性较低,但是它具有已知Kunitz型胰蛋白酶抑制剂的功能结构域。它有可能和神秘果素蛋白类似,可以不可逆地和一些受体或酶结合。NaMLP基因沉默后,研究人员发现转基因植物的抗虫性降低,同时胰蛋白酶抑制剂活性也显著性降低了。接着,研究人员又创制了NaMLP稳定超表达的植物,发现其抗虫性增强,而且蛋白粗提液中胰蛋白酶抑制剂活性也显著性增强了。这些实验均证明了NaMLP编码的蛋白具有胰蛋白酶抑制剂活性,是植物抗虫的重要基因。很有意思的是,和前面发现的NaKTI2不同,NaKTI2的表达依赖于转录因子WRKY3和WRKY6,而NaMLP受到的是茉莉酸和乙烯信号的协同诱导。   研究人员系统的工作证明了植物受到昆虫啃食后,会激活不同的信号系统,上调了不同的胰蛋白酶抑制剂编码基因,如:JA控制的NaPI,WRKY3调控的NaKTI2,以及茉莉酸和乙烯协同调控的NaMLP(见下图)。在生化与分子生物学水平上,揭示了基于胰蛋白酶抑制剂的抗虫反应的复杂性,编码胰蛋白酶抑制剂基因的多样性,以及调控的多样性,从而丰富了植物抗虫反应的调控网络。        研究成果以NaMLP, a new identified Kunitz trypsin inhibitor regulated synergistically by JA and ethylene, confers Spodoptera litura resistance in Nicotiana attenuata为题,在线发表于植物的经典期刊Plant Cell Reports。博士研究生杨茂和程俊斌为本论文的共同一作,通讯作者是吴劲松研究员。该论文得到了自然科学基金(31670262)等资助。