《金属印刷提供低成本的方式来制造柔性,可拉伸的电子器件》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2018-01-01
  • 北卡罗来纳州立大学的研究人员已经开发出一种直接打印金属电路的新技术,从而创造出灵活,可伸缩的电子元件。该技术可以使用多种金属和基材,并与采用直接印刷技术的现有制造系统兼容。

    北卡罗来纳州的爱德华·菲茨工业与系统工程系的副教授兼通讯作者Jingyan Dong 说:“柔性电子等多方面用途的承诺,但存在明显的制造成本,提出了挑战,使他们在商业应用的现实”。

    董先生说:“我们的方法应该能够降低成本,并提供高分辨率电路的高效生产方式,使其可以用于商业设备的整合。而且我们已经展示了我们方法的弹性和功能性,我们愿意与行业部门合作,在制造可穿戴传感器或其他电子设备方面实施这项技术。”

相关报告
  • 《基于液态金属的可拉伸电子器件》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2021-03-25
    • 可伸缩电子产品广泛应用于各种应用领域,如可穿戴电子产品、皮肤电子产品、软机器人和生物电子产品。传统使用弹性薄膜构建的可伸缩电子设备缺乏渗透性,这不仅会影响穿戴舒适性,长期佩戴后会引起皮肤炎症,而且限制了设备在垂直方向上的集成设计尺寸。 2021年2月18日,香港理工大学郑子剑教授团队报道了一种可拉伸的导体,它是通过简单地将液态金属涂覆或印刷在静电纺丝弹性体纤维垫上而制成的,并把这种可拉伸的导体称为“液态金属纤维垫”(LMFM)。液态金属悬挂在弹性纤维之间,自组织成横向网状和垂直弯曲的结构,同时提供高渗透性、延展性、导电性和电气稳定性。LMFM对空气、水分和液体具有良好的渗透性,并在10000次拉伸试验中保持超弹性(超过1800%应变)和超高导电性(高达1800000 S m−1)。体内和体外生物相容性试验表明,LMFM直接应用于皮肤具有良好的生物相容性。研究人员展示了用LMFMs制造和封装多种可渗透可拉伸电子器件的简易方法,该LMFM具有心电图(ECG)传感器、汗液传感器和垂直堆叠的加热器。 LMFMs通过三个简单步骤制备:(1)静电纺丝超弹性纤维毡,(2)在可拉伸毡上涂覆液态金属,(3)通过预拉伸激活渗透性。作为概念验证,选择了聚苯乙烯-嵌段-丁二烯-嵌段-苯乙烯(SBS)和共晶镓-铟合金(EGaIn)作为弹性体和液态金属。制作了一个具有320μm厚SBS衬垫和0.8 EGaIn-SBS质量载荷的LMFM样品。SBS微纤维的平均直径为2.7μm(图1b),SBS毡的断裂应变为2300%(图1e)。这种新制备的涂覆EGaIn的SBS毡呈现出有光泽的金属样表面,透气性很小(图1c)。为了激活渗透性,将衬底反复拉伸至1800%的应变,循环12次,在此过程中,闪亮的表面变得暗淡,平面EGaIn转变为悬浮在SBS微纤维之间的网格状多孔结构(图1d)。 图1 渗透性和超弹性的LMFM的典型制作过程示意图 LMFMs是一种新型的可拉伸导体,可以通过在弹性静电纺丝纤维毡上涂覆或印刷液态金属来制备。通过简单的预拉伸过程,液态金属会自组织成横向多孔且垂直弯曲的网状物,该网状物悬挂在弹性纤维之间。与其他基于液态金属的最新可拉伸导体相比,LMFMs是迄今为止唯一能够同时实现超高导电性、超高Q值、超高应变、高生物相容性和高渗透性的材料策略。展示了一种概念验证的三层整体可伸缩电子垫,具有独特的渗透性和全超弹性的优势。原则上,可以通过增加设备层的数量来实现更多的功能。研究人员展望,LMFMs将成为一个通用和用户友好的平台,用于制造集成密度高、多功能和长期耐磨的单片可拉伸电子产品。 该研究成果于2021年2月18日发表在《Nature Materials》, 题目:“Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics”。 《Nature Materials》在同一天也刊登发表了耶鲁大学Rebecca Kramer-Bottiglio课题组利用液态金属(EGaIn合金)网络实现高导电性、超可拉伸性和机械稳定性电子产品的研究报道。与以前将不同的金属颗粒混合到液态金属中的工作不同,该工作在原位形成固态氧化镓颗粒。其研究表明,当液态金属纳米颗粒被加热到900°C时,由于氧化和相分离,在表面形成一层固体薄膜;同时,下面的液态金属颗粒破裂并合并成一个液体网络。这形成一个高导电性(2.06×106 S m–1)薄膜,然后可以转移到软弹性体上。这种混合物还润湿了电子元件,克服了液态金属通常难以与其他表面接触的难题。 该研究成果于2021年2月18日发表在《Nature Materials》 , 题目:“Highly stretchable multilayer electronic circuits using biphasic gallium-indium”。
  • 《工业机器人实现柔性制造离不开哪些核心部件》

    • 来源专题:数控机床——前沿技术
    • 编译者:杨芳
    • 发布时间:2017-09-25
    • 对于工作在自动化生产线上的工业机器人来说,其完成最多的一类操作是“抓取-放置”动作。为了完成这类操作,对被操作物体定位信息的获取是必要的,首先机器人必须知道物体被操作前的位姿,以保证机器人准确地抓取;其次是必须知道物体被操作后的目标位姿。 工业机器人夹具快换 机器人工具快换装置(Robotic Tool Changer)通过使机器人自动更换不同的末端执行器或外围设备,使机器人的应用更具柔性。这些末端执行器和外围设备包含例如点焊焊枪、抓手、真空工具、气动和电动马达等。工具快换装置包括一个机器人侧用来安装在机器人手臂上,还包括一个工具侧用来安装在末端执行器上。工具快换装置能够让不同的介质例如气体、电信号、液体、视频、超声等从机器人手臂连通到末端执行器。机器人工具快换装置的优点在于: 1. 生产线更换可以在数秒内完成; 2. 维护和修理工具可以快速更换,大大降低停工时间; 3. 通过在应用中使用1个以上的末端执行器,从而使柔性增加; 4. 使用自动交换单一功能的末端执行器,代替原有笨重复杂的多功能工装执行器。 机器人工具快换装置,使单个机器人能够在制造和装备过程中交换使用不同的末端执行器增加柔性,被广泛应用于自动点焊、弧焊、材料抓举、冲压、检测、卷边、装配、材料去除、毛刺清理、包装等操作。另外,工具快换装置在一些重要的应用中能够为工具提供备份工具,有效避免意外事件。相对人工需数小时更换工具,工具快换装置自动更换备用工具能够在数秒钟内就完成。同时,该装置还被广泛应用在一些非机器人领域,包括托台系统、柔性夹具、人工点焊和人工材料抓举。 工业机器人视觉引导与定位 对于工作在自动化生产线上的工业机器人来说,其完成最多的一类操作是“抓取-放置”动作。为了完成这类操作,对被操作物体定位信息的获取是必要的,首先机器人必须知道物体被操作前的位姿,以保证机器人准确地抓取;其次是必须知道物体被操作后的目标位姿,以保证机器人准确地完成任务。 在大部分的工业机器人应用场合,机器人只是按照固定的程序进行操作,物体的初始位姿和终止位姿是事先规定的,作业任务完成的质量由生产线的定位精度来保证。为了高质量作业,就要求生产线相对固定,定位精度高,这样的结果是生产柔性下降,成本却大大增加,此时生产线的柔性和产品质量是矛盾的。 视觉引导与定位是解决上述矛盾的理想工具。 工业机器人可以通过视觉系统实时地了解工作环境的变化,相应调整动作,保证任务的正确完成。这种情况下,即使生产线的调整或定位有较大的误差也不会对机器人准确作业造成多大影响,视觉系统实际上提供了外部闭环控制机制,保证机器人自动补偿由于环境变化而产生的误差。 理想的视觉引导与定位应当是基于视觉伺服的。首先观察物体的大致方位,然后机械手一边运动一边观察机械手和物体之间的偏差,根据这个偏差调整机械手的运动方向,直到机械手和物体准确接触为止。但是这种定位方式在实现上存在诸多困难。 直接视觉引导与定位是一次性地对在机器人环境中物体的空间位姿进行详细描述,引导机器人直接地完成动作。与基于视觉伺服的方法相比,直接视觉引导的运算量大大减少,为实际应用创造了条件,但这必须基于一个前提:视觉系统能够在机器人空间中(基坐标系中)精确测定物体的三维位姿信息。