《突破 | 哈佛大学开发出可与光芯片无缝集成的光隔离器》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-07-07
  • 近日,哈佛大学约翰·保尔森工程与应用科学学院(SEAS)的一组研究人员开发了一种方法,他们打造了一个高效的集成隔离器,该隔离器可以无缝地集成到由铌酸锂制成的光学芯片中。他们的研究结果发表在《自然·光子学》(Nature Photonics)杂志上。据悉,SEAS开发的这种光隔离器可以在许多实际应用中大大改善光学系统。

    由四个不同调制长度的器件组成的薄膜铌酸锂电光隔离芯片的光学显微照片。(图片来源:Loncar Lab/Harvard SEAS)

    所有用于电信、显微镜、成像、量子光子学等领域的光学系统,都依赖于激光来产生光子和光束。为了防止这些激光损坏和不稳定,这些系统还需要隔离器(即防止光线向不希望的方向传播的组件)。隔离器也有助于减少信号噪声,防止光线不受限制地反弹。但是传统的隔离器体积相对较大,并且需要多种材料连接在一起,因而要实现增强的性能并不容易。

    领导上述团队的电气工程师Marko Loncar指出,他们建造了一种装置,可以让激光发射的光不受改变地传播,而反射回激光的反射光改变了颜色,并从激光中重新布线。他表示:“这是通过向反射光信号的方向发送电信号来实现的,从而利用了铌酸锂优异的电光特性。在这种特性中,可以施加电压来改变光信号的特性,包括速度和颜色。”

    “我们想为激光创造一个更安全的工作环境,通过设计这条单行道,我们可以保护设备免受激光反射的影响,”该论文的第一作者之一、前朗卡尔实验室博士后研究员Mengjie Yu表示,“据我们所知,与所有其他集成隔离器的演示相比,该设备具有世界上最好的光学隔离性能。除了隔离之外,它在所有指标上都具有最具竞争力的性能,包括损耗、能效和可调性。”

    这个设备的特殊之处在于,它的核心非常简单——它实际上只有一个调制器。之前所有类似的工程研究都需要多个谐振器和调制器,而他们之所以能做到这一点,则是因为铌酸锂本身的性质。

    这种高性能和高效率表现,背后的另一个原因与设备的尺寸有关——该团队在哈佛的纳米级系统中心制造了一个厚度为600纳米的芯片,蚀刻(使用规定的纳米结构来引导光线)的深度达到320纳米。

    该平台更小的尺寸和超低损耗特性也提高了其光功率。由于光不需要传播那么远,所以衰减和功率损失更少。

    该团队展示了该设备可以成功地保护芯片上的激光免受外部反射。据介绍,他们是首个在光隔离器的保护下展示激光相位稳定运行的团队。这一进展代表了实用、高性能光学芯片的重大飞跃,它可以与一系列激光波长一起使用,只需要反向传播的电信号就可以达到预期的效果。将光学系统的所有方面集成到单个芯片上,可以取代许多更大、更昂贵、效率更低的系统。

相关报告
  • 《突破!斯坦福团队开发出芯片级无源超薄激光隔离器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-01-03
    • 近日,来自斯坦福大学的研究团队宣布,他们成功地用硅制造了一种有效的无源超薄激光隔离器。 硅基集成电路会遵循摩尔定律,并受到半导体技术进步的推动。如今随着光子集成电路的出现,研究人员们已经超越了传统的电路架构。然而,缺乏稳定可靠的硅芯片激光源,始终是限制硅光子集成电路潜力的一个主要障碍——每束激光都需要一个隔离器,来阻止反向反射进入激光并使其不稳定。 传统光纤光学系统和庞大的光学系统往往利用具备法拉第效应的光隔离器来进行激光的维护。这种方法虽然可以在芯片上复制,但其可伸缩性仍然是一个问题,因为它与CMOS(互补金属氧化物半导体)技术不兼容。另一方面,科学家们在制造无磁隔离器(不依赖法拉第效应)方面也已取得了进展,然而它们会导致整个系统变得复杂且耗电。 斯坦福大学的研究人员在他们发表于《自然·光子学》(Nature Photonics)杂志上的论文中提出,理想的隔离器应该是完全无源和无磁的,这样才能顺利实现与CMOS技术的可扩展和兼容。 他们用硅材料创造了一种有效的无源芯片级隔离器,可以铺在比一张纸薄数百倍的半导体材料层中。这种集成连续波隔离器具有“克尔效应”,它由易于大规模生产的常见半导体材料——氮化硅(SiN)制成。 “克尔效应”表明,各向同性物质在电场作用下变得双折射,而由光引起的电场会导致材料折射率的变化,这将与光辐照度成正比。后一种效应在激光等强光束下变得更加明显。 上述团队的研究结果显示,SiN环中的“克尔效应”打破了环的顺时针和逆时针模式之间的简并,并允许波以非对称方式传输。主激光束穿过SiN环,使光子沿顺时针方向绕环旋转。同时,反射光束使光子以逆时针方向自旋。环内的循环导致了能量的积聚。增加的功率会影响较弱的光束(在这种情况下是反射光束),而较强的光束不受影响。 斯坦福大学电气工程教授、该研究的资深作者Jelena vukovovic和她的团队建立了一个原型作为概念证明,并演示了级联两个环形隔离器的耦合以实现优越的性能。他们还报告称,通过改变环形谐振器的耦合,他们可以权衡与耦合相关的隔离和损失。 接下来,研究人员计划进一步研究不同光频率的隔离器,并将致力于缩小这些组件,以探索芯片级隔离器的其他应用。
  • 《突破 | 新型高分辨率激光雷达芯片》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-03-21
    • 近日,加州大学伯克利分校(以下简称UC Berkeley)的Ming Wu教授团队开发出一种新型高分辨率激光雷达芯片,该芯片可装载于一系列设备,大到自动驾驶汽车,小到智能手机等。研究人员利用带有MEMS(微电子机械系统)开关的焦平面开关阵列FPSA,这是一种基于半导体的天线矩阵,可以像数码相机中的传感器一样收集光线,并将16384个像素点嵌入在1 cm2大小的芯片上。 基于FPSA的固态激光雷达传感器可以进行三维电子扫描,且不依赖任何笨重的机械零件。遗憾的是,之前报道的传感器分辨率均小于512像素。与固态激光雷达相比,机械激光雷达拥有强大的激光器,能够可视化数百码远的物体(1 码 ≈ 0.9144 米),并且生成高分辨率的3D图像,而如何芯片化这种激光器已困扰了研究人员十余年。 “我们希望有一个非常大的照明区域,但这样牺牲了光线强度,激光无法照射到足够远的地方。”Ming Wu教授说,“因此,为了权衡足够的光强,我们计划减少激光照射区域。” 图1 激光雷达芯片原理图。光学天线与微型MEMS开关连接,并发射出激光。反射光由同一天线接收,并依次打开阵列开关生成3D图像。UC Berkeley的工程师使用MEMS开关显著提高了激光雷达芯片传感器的分辨率 FPSAs使用类似数码相机的光学系统,将视野中的各个角度映射到成像镜头后焦面的像素点上。不同于相机集成在像素点的测距单元不一样,FPSA中的光开关网格允许所有像素共享一个或多个测距单元。由于每个像素点仅由一个光学天线和一个开关组成,大型阵列可以集成在单个芯片上,而实际激光功率由信号通过天线的时间决定。 硅基激光雷达系统通常利用热光开关将激光从一个波导重新定向到另一波导。UC Berkeley团队选择使用MEMS开关,能够在实空间中移动激光雷达系统中波导的位置。 “这种架构非常像高速公路立交桥。”Ming Wu教授说,“想象一下,如果你是一束光,要从东边跑到西边,我们可以人为地改变地面方向,使其逆时针旋转90°,这样你就可以从北边跑到南边。” 除了比热电开关更微型、更节能的优点外,MEMS的开关速度更快,光损耗更低,大规模使用光开关的光通信网络也验证了以上优点。研究人员说,通过调研,他们的团队是在激光雷达中嵌入MEMS开关的第一人。 该团队在10×11 mm2的硅光子芯片上集成了128×128个FPSA的阵列元,一个阵列元包括一个光学天线和MEMS开关(如图2)。在实验中,研究人员利用调频连续波(FMCW)确定物体距离,实现了空间分辨率为1.7 cm的三维成像。 此外,该系统利用焦距为5 mm的复合透镜,在70°×70°的视角场中(人类双眼的水平视野约为120° - 140°),引导激光束随机向16384(128×128)个方向照射,每个像素在视场的分辨率为0.6°。并且该系统将FPSA与FMCW测距相结合,进一步实现3D成像。CMOS(互补金属氧化物半导体)技术已经用于制造计算机处理器,利用CMOS技术设计FPSA,可使像素大小扩展至百万量级。 通过激光在阵列中迅速循环,FPSA构建了环境的3D成像。而若干FPSAs排列成圆环型,使设备360°无死角地观察周围环境。 在该系统商业化生产前,Wu教授团队计划进一步提高FPSA的分辨率和射程:“虽然光学天线很难再缩小,并且微型开关是最大部件,但是我们有信心能把它们做的更小。” 目前,该系统的射程已达到10 m,还有希望继续增加。Wu教授说:“我们确信射程能达到100 m,并且通过我们不断的改进,甚至能够达到300 m。” 图2 激光雷达芯片上光学天线的扫描电子显微镜图像 通过上述改进,加上利用传统CMOS技术批量生产FPSA,降低生产成本,芯片化的激光雷达能够用于各个方面,为自动驾驶汽车、无人机、机器人以及智能手机等提供新一代低成本、节能型3D传感器。此外,需要控制光束的应用也可以考虑FPSA,如自由空间光通信(FSO)和基于离子阱的量子计算。 “看看我们如何使用‘摄像头’。”Wu教授说,“它们被嵌入到交通工具、机器人、吸尘器、监控设备、生物特征识别系统和防盗门上。若我们把激光雷达缩小到智能手机摄像头大小,它将会有更广阔的应用前景。” 近日,Ming Wu教授就任英特尔研究院新成立的集成光电研究中心的研究员,该中心便于英特尔加速数据中心互连。其中,他参与的项目“硅光子晶圆级光包装”将促进集成波导透镜的发展,该透镜有望实现光纤阵列的低损耗和高容差非接触式光学封装。