《Shallow water acoustic channel estimation using two-dimensional frequency characterization》

  • 来源专题:水声领域信息监测
  • 编译者: ioalib
  • 发布时间:2016-12-12
  • Shallow water acoustic channel estimation techniques are presented at the intersection of time, frequency, and sparsity. Specifically, a mathematical framework is introduced that translates the problem of channel estimation to non-uniform sparse channel recovery in two-dimensional frequency domain. This representation facilitates disambiguation of slowly varying channel components against high-energy transients, which occupy different frequency ranges and also exhibit significantly different sparsity along their local distribution. This useful feature is exploited to perform non-uniform sampling across different frequency ranges, with compressive sampling across higher Doppler frequencies and close to full-rate sampling at lower Doppler frequencies, to recover both slowly varying and rapidly fluctuating channel components at high precision. Extensive numerical experiments are performed to measure relative performance of the proposed channel estimation technique using non-uniform compressive sampling against traditional compressive sampling techniques as well as sparsity-constrained least squares across a range of observation window lengths, ambient noise levels, and sampling ratios. Numerical experiments are based on channel estimates from the SPACE08 experiment as well as on a recently developed channel simulator tested against several field trials.

相关报告
  • 《Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-25
    • Registration Log In For Libraries For Publication Downloads News About Us Contact Us For Libraries For Publication Downloads News About Us Contact Us Search Paper Titles Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance p.1 Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants p.17 Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study p.33 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures p.49 Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect p.65 Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) p.79 Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy p.91 HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Quantization Conductance of InSb Quantum-Well... Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures Article Preview Abstract: Electron transport behaviour in InSb semiconductor significantly changes when the conduction is restricted to two-dimensions. Semiconductor materials are an effective tools to characterize the electron transport in this aspect because the energy separation between transverse modes in a low-dimensional semiconductor device are always inversely proportional to the effective mass, in the same way as for sub-bands in a parabolic potential. Therefore, in this article, a range of novel device geometries were designed, fabricated and characterized to investigate ballistic transport of electrons in low-dimensional InSb structures using surface gated devices to restrict the degrees of freedom (dimensionality) of the active conducting channel. In this framework, designs of gates (i.e., line, loop and solid discussed later) have been used over a range of gate dimensions. Consistent measurement of quantised conductance would be promising for both low power electronics and low temperature transport physics where split gates are typically used for charge sensing. This article presents an experimental results of quantization conductance obtained for the range geometries of novel gates, and some model consideration of the implications of the material choice. Furthermore, the etching techniques (wet and dry) exhibited a significant decrease of ohmic contact resistance from around 35kΩ to only roughly 250Ω at room temperature. Interestingly a possible 0.7 anomaly conduction was observed with a loop gate structure. This work showed perfectly that the two-dimensional electron gases can be formed in narrow gap InSb QWs which makes this configuration device promising candidate for topological quantum computing and next generation integrated circuit applications. Keywords: Quantization conductance, InSb QW, 2DEG, spilt gate structure, ballistic transport. Access through your institution Add to Cart You might also be interested in these eBooks View Preview Info: Periodical: Journal of Nano Research (Volume 83) Pages: 49-63 DOI: https://doi.org/10.4028/p-PLC4fu Citation: Cite this paper Online since: July 2024 Authors: Shawkat Ismael Jubair, Asheraf Eldieb, Ghassan Salem, Ivan Bahnam Karomi, Phil Buckle Keywords: 2 Dimensional Electron Gas (2DEG), Ballistic Transport, InSb Qw, Quantization Conductance, Spilt Gate Structure Export: RIS, BibTeX Price: Permissions: Request Permissions Share: - Corresponding Author References [1] K. Delfanazari, J. Li, Y. Xiong, P. Ma, R. K. Puddy, T. Yi, I. Farrer , S. Komori, J. W.A. Robinson, L. Serra, D.A. Ritchie, M. J. Kelly, H. J. Joyce , and C. G. Smith, Quantized conductance in hybrid split-gate arrays of superconducting quantum point contacts with semiconducting two-dimensional electron systems, Phys. Rev. Appl. 21 1 (2024) 1. DOI: 10.1103/physrevapplied.21.014051 Google Scholar [2] J. Yan, Y. Wu, S. Yuan, X. Liu, L. N. Pfeiffer, K. W. West, Y. Liu, H. Fu, X. C. Xie, and X. Lin, Anomalous quantized plateaus in two-dimensional electron gas with gate confinement, Nat. Commun. 14. 1 (2023). DOI: 10.1038/s41467-023-37495-9 Google Scholar [3] Z. Lei , E. Cheah, K. Rubi , M. E. Bal, C. Adam, R. Schott , U. Zeitler, W. Wegscheider, T. Ihn, and K. Ensslin., High-quality two-dimensional electron gas in undoped InSb quantum wells, Phys. Rev. Res. 4, 1 (2022) 1–9. DOI: 10.1103/physrevresearch.4.013039 Google Scholar [4] S. Heedt, M. Quintero-Pérez, F. Borsoi, A. Fursina, N. v. Loo, G. P. Mazur, M. P. Nowak, M. Ammerlaan, K. Li, S. Korneychuk, J. Shen, M. A. Y. van de Poll, G. Badawy, S. Gazibegovic, N. de Jong, P. Aseev, K. v. Hoogdalem, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices, Nat. Commun. 12, 1 (2021) 1–9. DOI: 10.1038/s41467-021-25100-w Google Scholar [5] E.J. Koop, A. I. Lerescu, J. Liu, B. J. van Wees, D. Reuter, A. D. Wieck, C.H. van der Wal, The influence of device geometry on many-body effects in quantum point contacts: Signatures of the 0.7 anomaly, exchange and Kondo, J. Supercond. Nov. Magn., 20, 6 (2007) 433–441. DOI: 10.1007/s10948-007-0289-5 Google Scholar [6] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. C Solid State Phys., 21, 8 (1988) L209–L214. DOI: 10.1088/0022-3719/21/8/002 Google Scholar [7] A. David and B. Miller, Optical physics of quantum wells. 2020. Google Scholar [8] U. I. Erkaboev, R. G. Rakhimov, J. I. Mirzaev, U. M. Negmatov, and N. A. Sayidov, Influence of a magnetic field and temperature on the oscillations of the combined density of states in two-dimensional semiconductor materials, Indian J. Phys., 98, 1 (2024) 189–197. DOI: 10.1007/s12648-023-02803-y Google Scholar [9] D. K. Ferry, S. M. Goodnick, and Jonathan Bird, Transport in Nanostructures, second Edi. Cambridge University Press, 2009. Google Scholar [10] Y.V Nazarov and Y.M. Blanter, Quantum Transport. Introduction to Nanoscience. Cambridge University Press, 2009. Google Scholar [11] C.W.J. Beenakker and H. van Houten, Quantum Transport in Semiconductor Nanostructures, Solid State Phys. - Adv. Res. Appl., 44, C (1991) 1–111. DOI: 10.1016/s0081-1947(08)60091-0 Google Scholar [12] G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa, M. Kozicki, S. Majumdar, M. Menghini, E. Miranda, C. Ricciardi, S. Tappertzhofen, K. Terabe, and I. Valov, Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications, Adv. Mater., 34, 32 (2022). DOI: 10.1002/adma.202270235 Google Scholar [13] K. Kawabata and M. Ueda, Nonlinear Landauer formula: Nonlinear response theory of disordered and topological materials, Phys. Rev. B, 106, 20 (2022) 1–39. DOI: 10.1103/physrevb.106.205104 Google Scholar [14] M.S. Al-Ghamdi, R.Z. Bahnam, and I.B. Karomi, Study and analysis of the optical absorption cross section and energy states broadenings in quantum dot lasers, Heliyon, 8, 9 (2022) e10587. DOI: 10.1016/j.heliyon.2022.e10587 Google Scholar [15] R. Joko Hussin and I. B. Karomi, Ultrashort cavity length effects on the performance of GaInP multiple-quantum-well laser diode, Results Opt., 12 (2023) 100452. DOI: 10.1016/j.rio.2023.100452 Google Scholar [16] U. W. Pohl, Epitaxy of Semiconductors Physics and Fabrication of Heterostructures, second ed. Springer Nature Switzerland, 2020. Google Scholar [17] T. Lill, Atomic Layer Processing Semiconductor Dry Etching Technology. WILEY-VCH GmbH, Boschstr, 2021. Google Scholar [18] D. Bimberg, Semiconductor Nanostructure. Springer-Verlag Berlin Heidelberg, 2008. Google Scholar [19] I. ?uti?, J. Fabian, and S. Das Sarma, Spintronics Fundamentals and applications, Rev. Mod. Phys., 76, 2 (2004) 323–410. DOI: 10.1103/revmodphys.76.323 Google Scholar [20] K. Shriram, R. R. Awasthi, and B. Das, Composition dependent structural, electrical, and optical properties of p-type InSb thin film for homojunction device application, Dig. J. Nanomater. Biostructures, 19, 1 (2024) 229–241. DOI: 10.15251/djnb.2024.191.229 Google Scholar [21] G. Hussain, G. Cuono, R. Islam, and A. Trajnerowicz, InAs / InAs 0.625 Sb 0.375 superlattices and their application for far-infrared, J. Phys. D. Appl. Phys., 22 (2022) 0–10. DOI: 10.1088/1361-6463/ac984d Google Scholar [22] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys., 89, 11 (2001) 5815–5875. DOI: 10.1063/1.1368156 Google Scholar [23] H. Tang, A. R. Barr, G. Wang, P. Cappellaro, and J. Li, First-Principles Calculation of the Temperature-Dependent Transition Energies in Spin Defects, J. Phys. Chem. Lett., 14, 13 (2023) 3266–3273. DOI: 10.1021/acs.jpclett.3c00314 Google Scholar [24] C. A. Lehner, T. Tschirky, T. Ihn, W. Dietsche, J. Keller, S. F?lt, and W. Wegscheider, Limiting scattering processes in high-mobility InSb quantum wells grown on GaSb buffer systems, Phys. Rev. Mater. 2, 2, 054601 (2018) 1–12. DOI: 10.1103/physrevmaterials.2.054601 Google Scholar [25] W. Yi, A. A. Kiselev, J. Thorp, R. Noah, B. M. Nguyen, S. Bui, R. D. Rajavel, T. Hussain, M. F. Gyure, P. Kratz, Q. Qian, M. J. Manfra, V. S. Pribiag, L. P. Kouwenhoven, C. M. Marcus, and M. Sokolich, Gate-tunable high mobility remote-doped InSb/In1?xAlxSb quantum well heterostructures, Appl. Phys. Lett., 106, 14 (2015) 142103. DOI: 10.1063/1.4917027 Google Scholar [26] F. Qu, J. v. Veen, F. K. de Vries, A. J. A. Beukman, M. Wimmer, W. Yi, A. A. Kiselev, B. M. Nguyen, M. Sokolich, M. J. Manfra, F. Nichele, C. M. Marcus, and L. P. Kouwenhoven, Quantized Conductance and Large g-Factor Anisotropy in InSb Quantum Point Contacts, Nano Letters, 16, 12 (2016) 7509–7513. DOI: 10.1021/acs.nanolett.6b03297 Google Scholar [27] Z. Lei , E. Cheah, F. Krizek, R. Schott, T. B?hler, P. M?rki, W. Wegscheider, M. Shayegan, T. Ihn, and K. Ensslin, Gate-defined two-dimensional hole and electron systems in an undoped InSb quantum well, Phys. Rev. Res., 5, 1 (2023) 13117. DOI: 10.1103/physrevresearch.5.013117 Google Scholar [28] S. I. Jubair, Influence of Dry and Wet Etching on AlInSb Contact Resistivity, Transfer Length , and Sheet Resistance Using Circular Transmission Model, J. Electron. Mater., 52 (2023) 2718–2721. DOI: 10.1007/s11664-023-10234-y Google Scholar [29] M. D. Feuer, Two-Layer Model for Source Resistance in Selectively Doped Heterojunction Transistors, IEEE Trans. Electron Devices, 32, 1 (1985) 7–11. DOI: 10.1109/t-ed.1985.21901 Google Scholar [30] K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y.Simmons, M. Pepper, D. R. Mace, W. R. Tribe, and D. A. Ritchie, Interaction effects in a one-dimensional constriction, Phys. Rev. B - Condens. Matter Mater. Phys., 58, 8 (1998) 4846–4852. DOI: 10.1103/physrevb.58.4846 Google Scholar [31] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and V. Umansky, Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system, Phys. Rev. Lett., 88, 22 (2002). DOI: 10.1103/physrevlett.88.226805 Google Scholar [32] L. W. Smith, A. A. J. Lesage, K. J. Thomas, F. Sfigakis, P. See, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith, Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs/AlGaAs Heterostructure, 044015, (2016) 1–10. DOI: 10.1103/physrevapplied.5.044015 Google Scholar [33] S. T. Herbert, M. Muhammad, and M. Johnson, All-electric quantum point contact spin-polarizer, Nat. Nanotechnol., 4, November (2009) 759–764. Google Scholar [34] M. Reed, Nanostructured Systems, Semeconductors and semimetals, New York: Academic press limited, 1992. Google Scholar [35] S. P. Zimin, E. S. Gorlachev, I. I. Amirov, M. N. Gerke, H. Zogg, and D Zimin, Role of threading dislocations during treatment of PbTe films in argon plasma, Semicond. Sci. Technol, 22 (2007) 929–932. DOI: 10.1088/0268-1242/22/8/018 Google Scholar [36] Y. Zhang, M. Sun, H. Wong, Y. Lin, P. Srivastava, C. Hatem, M. Azize, D. Piedra, and L. Yu, Origin and Control of OFF -State Leakage Current in GaN-on-Si Vertical Diodes, IEEE Trans. Electron Devices, 62, 7 (2015) 2155–2161. DOI: 10.1109/ted.2015.2426711 Google Scholar [37] Z. H. Feng, S. Member, S. J. Cai, K. J. Chen, and K. M. Lau, Enhanced-Performance of AlGaN–GaN HEMTs Grown on Grooved Sapphire Substrates, IEEE ELECTRON DEVICE Lett., 26, 12 (2005) 870–872. DOI: 10.1109/led.2005.859675 Google Scholar [38] A. Hofer, G. Benstetter, R. Biberger, C. Leirer, and G. Brüderl, Analysis of crystal defects on GaN-based semiconductors with advanced scanning probe microscope techniques, Thin Solid Films, 544 (2013) 139–143. DOI: 10.1016/j.tsf.2013.04.049 Google Scholar [39] F. Giannazzo, F. Roccaforte, F. Iucolano, V. Raineri, F. Ruffino, and M. G. Grimaldi, Nanoscale current transport through Schottky contacts on wide bandgap semiconductors, J. Vac. Sci. Technol., 27, 2 (2009) 789–793. DOI: 10.1116/1.3043453 Google Scholar [40] D. G. Hayes, C. P. Allford, G. V. Smith, C. McIndo, L. A. Hanks, A. M. Gilbertson, L. F. Cohen, S. Zhang, E. M. Clarke, P. D. Buckle, Electron transport lifetimes in InSb/Al1-xInxSb quantum well 2DEGs, Semicond. Sci. Technol., 32 (2017) 1–8. DOI: 10.1088/1361-6641/aa75c8 Google Scholar [41] C. Couso, V. Iglesias, M. Porti, S. Claramunt, M. Nafría, N. Domingo, A. Cordes, G. Bersuker, Conductance of Threading Dislocations in InGaAs / Si Stacks by Temperature-CAFM Measurements, IEEE ELECTRON DEVICE Lett., 37, 5 (2016) 640–643. DOI: 10.1109/led.2016.2537051 Google Scholar [42] M. Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications, second ed. Springer, 2010. Google Scholar [43] G. Christopher J. McIndoa, David G. Hayesa, Andreas Papageorgioua, Laura A. Hanksa and P. D. B. V. Smitha, Craig P. Allforda, Shiyong Zhangb, Edmund M. Clarkeb, Determination of the transport lifetime limiting scattering rate in InSb-AlxIn1?xSb quantum wells using optical surface microscopy, Phys. E, 91 (2017) 169–172. Google Scholar [44] J. A. Nixon, J. H. Davies, and H. U. Baranger, Breakdown of quantized conductance in point contacts calculated using realistic potentials, Phys. Rev. B, 43, 15 (1990) 638–641. DOI: 10.1103/physrevb.43.12638 Google Scholar [45] J. C. Chen, Y. Lin, K. T. Lin, T. Ueda, and S. Komiyama, Effects of impurity scattering on the quantized conductance of a quasi-one-dimensional quantum wire, Appl. Phys. Lett., 94, 012105 (2009) 1–3. DOI: 10.1063/1.3067995 Google Scholar [46] A. Bose, Effect of Phonons and Impurities on the Quantum Transport in XXZ Spin-Chains, 2022. Google Scholar [47] G. R. Nash, S. J. Bending, P. D. Buckle, D. P. Morgan, T. M. Burke, and T. Ashley, Characterization of a two-dimensional electron gas in an InSb/InAlSb heterostructure using surface acoustic, Semicond. Sci. Technol, 17 (2002) 1111–1114. DOI: 10.1088/0268-1242/17/10/314 Google Scholar [48] J.M.S. Orr, A.M. Gilbertson, M. Fearn, O.W. Croad, C. J. Storey, L. Buckle, M.T. Emeny, P.D. Buckle, and T. Ashley, Electronic transport in modulation-doped InSb quantum well heterostructures, Phys. Rev. B, 77, 165334 (2008) 1–7. DOI: 10.1103/physrevb.77.165334 Google Scholar [49] P. P. Das, N. K. Bhandari, J. Wan, J. Charles, M. Cahay, K. B. Chetry, R. S. Newrock, and S. T. Herbert, Influence of surface scattering on the anomalous conductance plateaus in an asymmetrically biased InAs/In0.52Al0.48As quantum point contact, Nanotechnology, 23, 215201 (2012) 1–9. DOI: 10.1088/0957-4484/23/21/215201 Google Scholar [50] I.S. Arafat and N.B. Balamurugan, Influence of Scattering in Near Ballistic Silicon NanoWire Metal-Oxide-Semiconductor Field Effect Transistor, J. Nanosci. Nanotechnol., 16, 6 (2016) 6032–6036. DOI: 10.1166/jnn.2016.12142 Google Scholar [51] R. Chaghi, C. Cervera, H. A?t-Kaci, P. Grech, J.B. Rodriguez, and P. Christol, Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes, Semicond. Sci. Technol., 24 (2009) 1–6. DOI: 10.1088/0268-1242/24/6/065010 Google Scholar Cited by Related Articles Citation Added To Cart This paper has been added to your cart To Shop To Cart For Libraries For Publication Insights Downloads About Us Policy & Ethics Contact Us Imprint Privacy Policy Sitemap All Conferences All Special Issues All News Read & Publish Agreements Scientific.Net is a registered brand of Trans Tech Publications Ltd © 2024 by Trans Tech Publications Ltd. All Rights Reserved
  • 《Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density》

    • 来源专题:水声领域信息监测
    • 发布时间:2016-11-21
    • A two-dimensional active acoustic metamaterial with controllable anisotropic density is introduced. The material consists of composite lead–lead zirconate titanate plates clamped to an aluminum structure with air as the background fluid. The effective anisotropic density of the material is controlled, independently for two orthogonal directions, by means of an external static electric voltage signal. The material is used in the construction of a reconfigurable waveguide capable of controlling the direction of the acoustic waves propagating through it. An analytic model based on the acoustic two-port theory, the theory of piezoelectricity, the laminated pre-stressed plate theory, and the S-parameters retrieval method is developed to predict the behavior of the material. The results are verified using the finite element method. Excellent agreement is found between both models for the studied frequency and voltage ranges. The results show that, below 1600 Hz, the density is controllable within orders of magnitude relative to the uncontrolled case. The results also suggest that simple controllers could be used to program the material density toward full control of the directivity and dispersion characteristics of acoustic waves.