《三元锂电池硬核穿刺测试!实验画面:瞬间起火爆炸》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-05-29
  • 消费者对于电动车安全性的担忧,实际上大部分是来自于对动力电池的担忧。为了检验电池的安全性,国家也出台了相关测试标准。其中,电池的针刺测试,为安全标准要求最高的测试,自其问世以来,却被行业“选择性搁置”,主要原因是目前还没有一款三元锂电池通过该测试。

      为了验证三元锂电池能否通过针刺测试,有网友进行了一次硬核的三元锂电池穿刺实验。

      进行穿刺实验的电池为宁德时代811三元锂电池单体,电池容量234a电压4.14v(满电为4.2V),穿刺钢针直径7毫米,穿刺速度25mm/s。执行GB/T 31485标准进行穿刺测试。

      随后开始进行穿刺实验,从实验画面中可以看出,从钢针刚穿刺电池后,电池内部就发生了剧烈膨胀现象。而后,电池单体瞬间爆炸,同时伴随有起火现象,电池开始剧烈燃烧,电池内部物质向外喷射而出。很显然,该款三元锂电池单体没能通过穿刺测试。

      此外,在5月13日,工业和信息化部公布的GB 30381-2020《电动汽车用动力蓄电池安全要求》中,特别提出了电池系统热扩散试验,要求电池单体发生热失控后,电池系统在5分钟内不起火不爆炸,为乘员预留安全逃生时间。

相关报告
  • 《广汽埃安发布“弹匣电池” 重新定义三元锂电池安全标准》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-03-15
    • 广汽埃安3月10日宣布成功研发弹匣电池系统安全技术。广汽埃安称,三元锂电池第一次实现针刺不起火,远超国标5分钟的标准。 据公安部交通管理局统计数据显示,截至2020年底,全国新能源汽车保有量达492万辆,其中,纯电动汽车保有量400万辆,占新能源汽车总量的81.3%。新能源汽车增量连续三年超过100万辆,且增长幅度逐年递增,说明广大汽车消费者在购车选择上,已逐步了解、认知、接受新能源车型,尤其是纯电车型。但谈到电动车时,有一个始终绕不过去的话题,那就是——安全。 统计数据显示,2020全年国内有报道的自燃起火事故共61起,事故原因大部分是因为动力电池问题导致,已明确的纯电动汽车车型达到51起,占比84%,插电混合动力车型2起,另有8起事故车辆动力类型不明。起火的原因多数集中在动力电池方面,除此之外还有电池管理策略BMS、散热系统、整车结构设计等多方综合因素。 目前在电动乘用车领域,动力电池基本集中在磷酸铁锂电池与三元锂电池两种。磷酸铁锂电池,成本低、循环寿命长、安全性较高,但能量密度相对较低,续航较短;三元锂电池,能量密度高、续航比较长,但制约它的是安全性。如何在兼顾续航的同时,还能保证车辆的安全性?就需要在提升三元锂电池的安全策略上下功夫。 现阶段,我国对电动汽车动力蓄电池安全实施的是2020年5月12日发布的《GB38031-2020动力汽车用动力蓄电池安全要求》,于2021年1月1日正式实施。该标准对之前实施的GB/T31485— 2015及GB/T31467.3—2015进行了部分修改与升级,在附录C《热扩散乘员保护分析与验证报告》中规定,“电池包或系统在由于单个电池热失控引起热扩散、进而导致乘员舱发生危险之前5分钟,应提供一个热事件报警信号”,从这里可以看出,不管新能源车辆采用是哪种动力电池,都需要在电池热失控时,给予消费者充足的时间自救。规定中对热扩散乘员保护验证方式推荐针刺试验方法,具体的操作如下图: 去年比亚迪曾公布了刀片电池的针刺试验,得到了不错的结果,但需要说明的一点是,实验对象是磷酸铁锂电池,并不是三元锂电池。今天广汽埃安则凭借全新动力电池系统安全技术对三元锂电池进行了针刺试验。 据目前公布的信息显示,整体的测试项目达成了既定的目标,那么,这个试验的背后核心是什么? 为什么叫弹匣电池? 一个个电芯放置在安全舱中,类似“弹匣”,中间采用航空级的二氧化硅级耐高温纳米材料,具有耐高温、绝热的特征,最大程度上可以起到阻燃、隔热的效果。 技术核心是什么? 它的4大核心技术表现在,超高耐热稳定电芯、超强隔热电池安全舱、极速降温三维速冷系统、全时管控第五代电池管理系统。 在正极材料中,采用纳米级包覆和掺杂技术,电解液通过新型添加剂应用实现SEI膜的自修复,同时采用全极耳叠片,内阻降低10%,可以加快散热,通过这三种技术的融合,将电池电芯耐热温度提升30%,形成超高耐热的稳定电芯。 此外,电池舱采用超耐高温的上壳体,达到电池安全舱整体耐温达到1400℃以上,确保相邻电芯不发生热失控。 在冷却系统方面,采用三维速冷方式,全贴合液冷集成系统+高效散热通道设计+高精准导热路径设计,达到散热面积提升40%、散热效率提高30%的效果。 同时采用全时管控电池管理系统,采用最新一代电池管理芯片、10次/秒的全天候数据采集、24小时全覆盖,达到全时管控效果。如果系统发现某一个电芯发生了异常,系统将启动自救操作、启动速冷系统进行安全施救,将电芯的温度降到热失控的临界值之下。 为什么只做针刺试验? 因为针刺试验是业内公认的电池安全技术的珠穆朗玛峰。对于热扩散试验,有针刺与加热两种方式,是要模拟在一个电芯发生短路热异常后,不会扩散到下一个电芯引起一连串热反应。那么埃安解决就是在发现第一个电芯发生异常后,及时侦测、及时解决,理论上就能做到电池整包的安全性。 广汽埃安现状与未来产品规划 全国目前有超10万的埃安用户(其中有一定比例的运营车辆),行驶里程每天超过1500万公里。厂家通过海量电池运行数据汇总分析,为科研提供了坚实数据支撑。 弹匣电池技术今后将在埃安全系车型上进行陆续更迭搭载,第一款产品就是即将发布的埃安Y,可谓“入门既安全”。 新技术会不会带来产品价格波动? 笔者认为,在相对革新技术出现的前期,肯定会在产品层面有一定幅度的提升,这是任何产品研发都会经历的过程,待商品应用数量大面积铺开后,势必会平摊前期的研发费用,产品成本价格也会有所回落。 总结:新技术提升全新安全标准 不论是去年风靡一时的比亚迪刀片技术,还是现在的广汽埃安弹匣电池技术,都在为广大汽车消费者提供更为安全的用车环境和体验。其中针对续航里程更具优势的三元锂电池车型,广汽埃安的弹匣电池技术理论上会大幅降低目前存在的电动车(三元锂电池车型)自燃等安全问题,它提供的解决方案并不是只停留在物理结构上的变化,而是一整套针对动力电池的打包解决技术方案,最大程度上保障消费者人身及财产安全。与此同时,采用超过国标测试标准的针刺试验,也为今后相关标准的修订提供了富有价值的参考。
  • 《锂电池改变世界》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-11
    • 2019年诺贝尔化学奖为表彰锂电池技术的不断完善和进取,授予了约翰•B•古迪纳夫、M•斯坦利•威廷汉和吉野彰。 “氢氦锂铍硼碳氮氧氟氖钠镁铝硅……”,这是我们初中化学课脑袋发大也要背诵的元素周期表。氢是最活跃的气体,锂是最活跃的金属,甚至与非常稳定的氮都能发生化学反应。用锂来制造电池,如果没有这些伟大的发明家,你的手机就如同一个打开保险盖的手榴弹。 上世界70年代,人们将金属锂作为电极,研发出了锂电池。但由于锂的活跃性,电池起火爆炸问题难以解决。 古迪纳夫可以算是一个杂家出身。在大学学习过古典文学、哲学、数学,仅仅修过两年化学课。二战中参加美军,在太平洋战场上从事气象数据收集。战后回到大学学习物理,博士毕业后又去研究固体磁性。1976年他54岁,进入牛津大学无机化学实验室当主任,才算开始将研究领域转入电池。到上世纪80年代,古迪纳夫发明了相对更加稳定的“钴酸锂”材料,大幅度降低了锂电池易燃易爆的几率,算是把手榴弹的保险盖又盖上了,使其能够成为一种实用的产品能够进入我们的生活。 显然,在古迪纳夫眼中,钴酸锂远未达到理想的状态。1997年,75岁的他又拿出了“磷酸铁锂”材料的发明,进一步提升了锂电池的安全性。至此,他被誉为“锂电池之父”。在90岁的时候,他再次发布了更安全、更廉价、更实用的“全固态电池”技术,避开了锂电池内电解液可能带来的不安全性,算是可以彻底不用担心手机变成手榴弹了。而今年获得诺贝尔奖,他已97岁。 怀廷汉姆研究用层状材料制造电极,将锂离子存储在钛硫化物的片层内。锂离子可以从一个电极穿梭到另一个电极,从而形成可充电电池。吉野彰研究将碳基材料为阳极用于锂电池,再用钴酸锂为阴极,去除电池中的易燃易爆的金属锂,提高了安全性,使锂电池更加实用。正是他们锲而不舍的研究,将锂电池成为改变我们生活最主要的发明之一。 今天,锂离子电池储能技术已经极深地渗透到我们社会生活的方方面面。30多年前,我曾经是一个职业新闻摄影记者,一个头疼的问题是如何保持闪光点有充足电力完成采访。当时我们使用镍氢储能电池,一组四个充电电池只能保证不到一个胶卷36张的闪光照明,而且价格很贵、寿命很短。电池还有记忆,充电前要先放电,一组电池连放带充要十几个小时,麻烦无比。若闪光灯不亮了,你就拍不到需要的照片,回来就无法向总编交差。那时每次出门都要带上一大堆蓄电池,还要带上干电池备用。而今天,如果使用锂电池基本不用担心这种问题。同时,技术的急速进步已将新闻摄影记者这个职业基本淘汰,任何一个记者甚至普通人都可以拿一部智能手机抢拍和发布最及时的新闻图像。 今天,我们的手机锂电池储电量都已超过4000mAh,让手机不仅是一个电话,而且成为几乎无所不能的智能信息终端。在高强度使用的情况下也可支持近十个小时,而且随时可以快速充电,极大的方便了我们的生活,以至于我们拿一部手机就可以行走天下。 1990年,我们在美国见到的第一个手提电脑,要卖2000多美元,CPU是386SX,速度只有16M,电池仅能为维持运行40分钟,而且不到1年就要更换新电池,换一块电池要几百美元。而今天,很多笔记本和平板电脑只卖几百美元,持续使用8小时,重量只有几百克。这除了电子技术的进步,也有电池技术进步的支撑。 电池技术进步让我们从互联网时代走向了移动互联时代,同时也改变了我们的交通和能源系统。日本曾经组织专家评估电池储能技术前景,多数专家不看好锂电池,认为其安全性、储能质量密度、成本都没有前景,所以日本车企押注氢燃料电池并重金投入。但是,没有想到埃隆•马斯克用日本自己生产的钴酸锂电池制造的电动汽车,一次充电居然可以行使600公里,基本替代了传统汽车,让氢燃料电池技术面临“既生瑜何生亮”的窘境。只能用免费提供技术和分享专利来忽悠中国,希望以此分担前期投入的成本。 埃隆•马斯克说:“不要相信业内专家告诉你技术已经登峰造极,任何技术都可能存在创新突破的巨大空间。”这一次三位老先生获得诺奖,恰恰证明了马斯克的判断。锂电池技术进步仍有巨大的空间,将颠覆的是整个世界。 中国国家电网在推进“泛在能源互联网”,一个重要的技术进步,就在于电力储能技术的突破。截至2019年6月,中国新能源汽车保有量达344万辆,其中纯电动汽车保有量281万辆,占新能源汽车总量的81.74%。纯电动汽车的性价比已经接近甚至越过临界点,预计2020年新能源车500万辆保有量的目标有望实现。根据规划,到2030年中国新能源车将达到2000万辆,其中80%是纯电动汽车。目前市场销售的主力车型行驶里程已达到400-500公里,蓄电池容量60-80千瓦时。如果在每辆车每天在用电高峰时段向电网返送10千瓦时电力,就是1.6亿千瓦的调峰容量,相当于现有抽水蓄能电站的5倍,将彻底颠覆既有电力系统的格局。 电网有足够的调峰容量,就可以接纳更多不稳定不确定的光伏和风电,就会有更多的家庭和企业通过分布式能源生产可再生能源电力进行储存或销售。电动汽车充电电池在从汽车退役后,仍可以长时间继续应用于分布式储能,使未来电力系统和今天的互联网一样无处不在并实现移动互动。能源、信息、交通、建筑、工业和农业,将因为电池而融为一体,实现泛在互联,而锂电池在其中担负了至关重要的任务。 中国要特别感谢约翰•B•古迪纳夫、M•斯坦利•威廷汉和吉野彰这三位伟大的发明家,因为中国是这些技术的最大受益者。这不仅是因为中国是智能手机和笔记本及平板电脑持有量最多的国家,他们的技术改变了我们沟通、交流、学习的方式。而且,中国还是电动汽车保有量最多的国家,大量的电动汽车不仅颠覆了我们的交通方式,减少了对石油的依赖,也改善了我们城市的空气质量。同时,中国还是相关产品最大的生产国和出口国,为我们创造了大量就业、税收和财富。 2018年全球前十大动力电池生产商中,中国企业占据7席。其中,宁德时代电池出货量全球第一,达到23.4GWh,第二名松下为20.7GWh,第三名比亚迪11.4GWh,第四名LG化学只有7.4GWh,第7名三星SDI仅有3GWh。2019年1-8月,我国动力电池装车量超过GW的有三家。其中宁德时代遥遥领先,达到13.64GWh,实现装车26.26万辆,占据市场份额的45.5%。 到2020年,中国的锂电池生产能力可以满足116.21万辆电动汽车的产量,其中58.02万辆乘用车,58.19万辆商用车。到2025年,将可满足生产262.47万辆电动汽车,其中150.67万辆乘用车,112.07万辆商用车。到那时,城市里的公交车和市政用车将可全部电动化,而大湾区、长三角和京津冀将可能率先实现交通零排放目标,城市空气质量将从根本上得以改善。 为此,我们应该再一次感谢这些获得诺贝尔奖伟大的发明家,感谢他们坚持不懈的努力,感谢他们用科学改变世界的精神。