Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study
Jun Chen, Lianlian Wu, Jun Zhang, Liang Zhang, Dexin Gong, Yilin Zhao, Shan Hu, Yonggui Wang, Xiao Hu, Biqing Zheng, Kuo Zhang, Huiling Wu, Zehua Dong, Youming Xu, Yijie Zhu, Xi Chen, Lilei Yu, Honggang Yu
doi: https://doi.org/10.1101/2020.02.25.20021568
Abstract
Background: Computed tomography (CT) is the preferred imaging method for diagnosing 2019 novel coronavirus (COVID19) pneumonia. Our research aimed to construct a system based on deep learning for detecting COVID-19 pneumonia on high resolution CT, relieve working pressure of radiologists and contribute to the control of the epidemic. Methods: For model development and validation, 46,096 anonymous images from 106 admitted patients, including 51 patients of laboratory confirmed COVID-19 pneumonia and 55 control patients of other diseases in Renmin Hospital of Wuhan University (Wuhan, Hubei province, China) were retrospectively collected and processed.
*注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.