《单原子纳米酶的设计及应用》

  • 来源专题:生物安全网络监测与评估
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-02-28
  • 2019年01月29日,《Angewandte Chemie International Edition》杂志在线发表了单原子纳米酶仿生设计的最新研究成果。这项工作有助于理解纳米酶的催化机理,并促进纳米酶在生物催化领域的发展。

      自从2007年Fe3O4纳米材料蕴含酶学特性(Nature Nanotechnology,2007)被报道以来,纳米酶新概念已经被同行广泛接受。目前已有超过40种元素的130多种纳米酶被报道。然而,如何学习天然酶活性中心的结构特征,来指导设计新型高活性纳米酶,一直是纳米酶领域研究的重要问题。

      天然过氧化物酶的活性中心为铁卟啉结构,有研究表明,过氧化物酶的铁卟啉可以替换为Zn卟啉,从而获得更的高催化活性。受此研究启发,研究人员仿照天然过氧化物酶,利用金属有机框架(MOF)材料ZIF-8为前驱体,通过介孔硅保护策略,设计合成了一种含有Zn卟啉结构的高活性单原子纳米酶。经一系列试验证实,Zn卟啉结构中的单原子Zn是其类酶活性的关键。通过理论计算,揭示其活性结构为类Zn卟啉的不饱和Zn-N4结构,并且该单原子纳米酶是通过促进H2O2均裂产生羟基自由基来发挥类过氧化物酶活性。在体外抗菌实验中,该单原子纳米酶实现了高达99.85%的抑菌率,同时,能够在低浓度H2O2情况下有效促进小鼠伤口感染模型中伤口的愈合。

      本研究由中国科学院生物物理研究所阎锡蕴课题组与北京化工大学刘惠玉课题组合作完成。其中,中国科学院生物物理研究所阎锡蕴研究员、范克龙副研究员和北京化工大学刘惠玉教授为该论文的共同通讯作者。此外,国家纳米中心施兴华研究员团队,扬州大学高利增教授团队均对本工作做出了重要贡献。该研究获得国家自然科学基金、中国科学院先导项目、中国科学院前沿重点项目、青年人才托举工程等项目的资助。

相关报告
  • 《国家纳米科学中心在单原子酶用于肿瘤催化治疗方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-11-11
    • 近日,国家纳米科学中心陈春英研究组和杨蓉研究组在单原子纳米酶用于肿瘤催化治疗方面取得重要进展。相关研究成果以Tumor-Microenvironment- Responsive Cascade Reactions by a Cobalt-Single-Atom Nanozyme for Synergistic Nanocatalytic Chemotherapy为题,发表于《德国应用化学》(Angewandte Chemie International Edition, 2022,61, e202204502)。 近年来,基于肿瘤微环境(TME)响应产生活性氧(ROS)的纳米催化疗法受到广泛关注。然而,纳米材料模拟酶(简称纳米酶)有着多种表面构象和晶体结构,以及不均一的元素分布,因而衍生出复杂的催化机制,对提升其类酶活性和特异性带来重大挑战。如何合理设计和有效模拟生物酶的活性位点和空间构象,仍然是一个非常关键而极具挑战性的研究方向。 单原子纳米酶是新近发展起来的一类纳米酶,具有可设计的几何结构和电子配位、独特的量子尺寸效应和最大限度的原子利用效率,为桥连纳米酶和天然酶创造了重要机遇。受天然酶结构启发,人们通过模拟其金属-Nx活性单元,陆续开发出一些仿生单原子纳米酶。其中,以TME过表达的H2O2为反应底物,这些单原子纳米酶通过芬顿反应可产生羟基自由基等活性氧物种。然而,由于肿瘤组织H2O2浓度有限,迫切需要探索高效产生ROS的新型化学反应路径。 Co是一种人体不可或缺的微量元素,广泛存在于维生素B12(钴胺素),该中心Co离子与四吡咯咕啉环配位,具有参与制造骨髓红细胞、防止恶性贫血和保护大脑神经系统等功能。国家纳米科学中心陈春英研究员、杨蓉研究员和蔡双飞副研究员等人合作研发了一种通过Co单原子纳米酶启动级联酶促反应进行肿瘤催化治疗的新策略。这种纳米酶由氮掺杂的多孔碳负载Co单原子(Co-SAs@NC)组成,有着比表面积大、高度分散的原子位点和Co-N配位结构等优势。在级联催化反应中,它首先发挥类似过氧化氢酶(CAT)活性,将肿瘤细胞内源性H2O2分解产生O2,随后表现类氧化酶(OD)活性,将O2还原成超氧阴离子(O2•−)自由基,引发肿瘤细胞凋亡。进一步与化疗药物(阿霉素)联用,显著增强了抗肿瘤效果。 该材料通过配位-热解-腐蚀过程制备得到,并用球差电镜、同步辐射等表征技术证实了其单原子结构。 Co-SAs@NC显示出高效的类CAT活性,其分解H2O2产生O2的表观活化能由Arrhenius方程测定为34.1 kJ mol-1,低于氮掺杂的多孔碳负载的Co纳米颗粒(43.1 kJ mol-1)、过氧化氢酶(46.4 kJ mol-1)和H2O2热分解需要的能量(210 kJ mol-1)。同时,其具有较宽的温度使用范围(30-75 oC)和可回用能力。通过米氏方程考察其稳态动力学,发现其催化常数(kw)高于很多已知的CAT模拟酶。更为独特的是,在级联催化反应中,Co-SAs@NC能有效激活类似CAT催化所生成的O2而发生类似OD催化,导致产生O2•−作为关键活性氧物种,同时可抑制类似过氧化物酶(POD)活性。DFT计算结果表明,O2比H2O2在Co-N4位点有更低的吸附能(-0.81 eV vs. -0.32 eV),这种优先的O2吸附及其活化造成O-O键长拉伸(从1.20Å到1.29Å),最终使得材料对OD催化表现出出色的特异性。稳态动力学研究结果显示,其类OD活性高于很多单原子纳米酶和传统纳米酶。 细胞毒性实验、ROS荧光、流式细胞术等实验结果表明,Co-SAs@NC在pH=6.0的酸性环境下,由级联反应产生大量的O2•−自由基,联用阿霉素后,这种协同的纳米催化化疗对小鼠乳腺癌生长表现出了显著的抑制效果(92%)。HE染色和小鼠生化指标测试结果显示,主要组织器官没有明显损伤, Co-SAs@NC表现出良好的生物相容性。实验结果表明基于Co单原子纳米酶的纳米催化化疗是一种很有前途的肿瘤治疗策略。 国家纳米科学中心蔡双飞副研究员和北卡罗来纳州立大学刘佳明博士为该文章的共同第一作者,陈春英研究员、杨蓉研究员和蔡双飞副研究员为共同通讯作者。上述研究工作得到了中国科学院战略性先导计划、国家重点研发计划、国家自然科学基金、广东省重点研发计划、广东高水平创新研究机构等项目的支持。   图. Co-SAs@NC启动肿瘤微环境响应的级联反应用于肿瘤催化治疗
  • 《可设计的和动态的单壁刚性纳米管,由序列定义的peptoids组装而成。》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-01-28
    • 尽管有机碳纳米管的组装最近取得了进展,但对小管的序列定义工程和动态响应特性的讨论仍然是一个挑战。在这里,我们报告了一个由序列定义的肽组成的高度可设计和动态纳米管的新系列,通过一个独特的“纳米薄片的卷起和关闭”机制。在组装过程中,非晶态的两亲水分子的球形颗粒在折叠形成单壁纳米管之前结晶形成良好的纳米薄片。这些纳米管经历了一种由ph触发的可逆的收缩膨胀运动。通过改变多肽的疏水残留量,我们演示了纳米管壁厚度、直径和力学性能的优化。原子力显微镜下的机械测量显示,peptoid纳米管非常坚硬(杨氏模量~ 13-17 GPa)。我们进一步论证了纳米管中官能团的精确结合及其在水净化和细胞粘附和吸收中的应用。这些纳米管提供了一个健壮的平台,以开发适合于特定应用的仿生材料。 ——文章发布于2018年1月18日