《BioRxiv,2月13日,Teicoplanin potently blocks the cell entry of 2019-nCoV》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-14
  • Teicoplanin potently blocks the cell entry of 2019-nCoV

    Junsong Zhang, Xiancai Ma, Fei Yu, Jun Liu, Fan Zou, Ting Pan, Hui Zhang

    doi: https://doi.org/10.1101/2020.02.05.935387

    Abstract

    Since December 2019, the outbreak of a new coronavirus, named 2019-nCoV, has greatly threatened the public health in China and raised great concerns worldwide. No specific treatment for this infection is currently available. We previously reported that teicoplanin, a glycopeptide antibiotic which has routinely been used in the clinic to treat bacterial infection with low toxicity, significantly inhibits the invasion of cells by Ebola virus, SARS-CoV and MERS-CoV, via specifically inhibiting the activity of cathepsin L. Here, we tested the efficacy of teicoplanin against 2019-nCoV virus infection and found that teicoplanin potently prevents the entrance of 2019-nCoV-Spike-pseudoviruses into the cytoplasm, with an IC50 of 1.66 μM. Although the inhibitory effect upon the replication of wildtype viruses ex vivo and in vivo remains to be determined, our preliminary result indicates that the potential antiviral activity of teicoplanin could be applied for the treatment of 2019-nCoV virus infection.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.02.05.935387v1
相关报告
  • 《bioRxiv,2月21日,Potential T-cell and B-cell Epitopes of 2019-nCoV》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-22
    • Potential T-cell and B-cell Epitopes of 2019-nCoV Ethan Fast, Binbin Chen doi: https://doi.org/10.1101/2020.02.19.955484 Abstract As of Feb 16th 2020, 2019-nCoV has infected more than 51,857 people across 26 countries and claimed 1666 lives. 2019-nCoV is a novel form of coronavirus that causes COVID-19 and has high similarity with SARS-CoV. No approved vaccine yet exists for 2019-nCoV or any form of coronavirus. Here we use computational tools from structural biology and machine learning to identify 2019-nCoV T-cell and B-cell epitopes based on viral protein antigen presentation and antibody binding properties. These epitopes can be used to develop more effective vaccines and identify neutralizing antibodies. We identified 405 viral peptides with good antigen presentation scores for both human MHC-I and MHC-II alleles, and two potential neutralizing B-cell epitopes near the 2019-nCoV spike protein receptor binding domain (440-460 and 494-506). Analyzing mutation profiles of 68 viral genomes from four continents, we identified 96 coding-change mutations. These mutations are more likely to occur in regions with good MHC-I presentation scores (p=0.02). No mutations are present near the spike protein receptor binding domain. We validated our computational pipeline with SARS-CoV experimental data. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《bioRxiv,2月21日,Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-22
    • Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses Furong Qi, Shen Qian, Shuye Zhang, Zheng Zhang doi: https://doi.org/10.1101/2020.02.16.951913 Abstract The new coronavirus (2019-nCoV) outbreak from December 2019 in Wuhan, Hubei, China, has been declared a global public health emergency. Angiotensin I converting enzyme 2 (ACE2), is the host receptor by 2019-nCov to infect human cells. Although ACE2 is reported to be expressed in lung, liver, stomach, ileum, kidney and colon, its expressing levels are rather low, especially in the lung. 2019-nCoV may use co-receptors/auxiliary proteins as ACE2 partner to facilitate the virus entry. To identify the potential candidates, we explored the single cell gene expression atlas including 119 cell types of 13 human tissues and analyzed the single cell co-expression spectrum of 51 reported RNA virus receptors and 400 other membrane proteins. Consistent with other recent reports, we confirmed that ACE2 was mainly expressed in lung AT2, liver cholangiocyte, colon colonocytes, esophagus keratinocytes, ileum ECs, rectum ECs, stomach epithelial cells, and kidney proximal tubules. Intriguingly, we found that the candidate co-receptors, manifesting the most similar expression patterns with ACE2 across 13 human tissues, are all peptidases, including ANPEP, DPP4 and ENPEP. Among them, ANPEP and DPP4 are the known receptors for human CoVs, suggesting ENPEP as another potential receptor for human CoVs. We also conducted "CellPhoneDB" analysis to understand the cell crosstalk between CoV-targets and their surrounding cells across different tissues. We found that macrophages frequently communicate with the CoVs targets through chemokine and phagocytosis signaling, highlighting the importance of tissue macrophages in immune defense and immune pathogenesis. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.