《Cell:揭示流感病毒如何成功地从宿主细胞中逃逸出来》

  • 来源专题:中国科学院病毒学领域知识资源中心
  • 编译者: wuyw
  • 发布时间:2019-03-23
  • 几十年来,科学家们已知道人体内的流感病毒与实验室中培养的流感病毒有很大不同。一种常用的研究流感病毒的方法就是将荧光蛋白与组成流感病毒的蛋白融合在一起。但是这些荧光蛋白与流感蛋白具有大约相同的大小,引入如此相对较大的融合蛋白到流感病毒中会引发病毒紊乱。

    在一项新的研究中,为了解决这一挑战,美国华盛顿大学圣路易斯分校工程与应用科学助理教授Michael Vahey和加州大学伯克利分校生物工程主任Daniel A. Fletcher采用一种不同的方法对流感病毒蛋白进行标记。具体而言,他们改进了一种通常用于对蛋白上的一个特定区域进行标记的方法,即“位点特异性标记(site-specific labeling)”:并不使用一种荧光蛋白,而是将长5到10个氨基酸的短肽序列插入到组成甲型流感病毒的蛋白中;在插入这些短肽序列后,加入酶和少量荧光染料,这些酶获取不同的染料分子并将这些染料分子连接到流感病毒蛋白上,这样就能够观察单个流感病毒蛋白,同时又不破坏它们的功能,也不破坏由它们组成的流感病毒。相关研究结果近期发表在Cell期刊上,论文标题“Low-Fidelity Assembly of Influenza A Virus Promotes Escape from Host Cells”。

    图片来自Cell, doi:10.1016/j.cell.2018.10.056。

    令这两名研究人员感兴趣的流感病毒蛋白是血凝素(hemagglutinin, HA)和神经氨酸酶(neuraminidase, NA)。HA让流感病毒附着到宿主细胞上,而NA让这种病毒从宿主细胞中脱落下来,这样它就能够接着感染其他的宿主细胞。

    利用这种位点特异性标记方法,Vahey和Fletcher开展实验旨在了解在单个流感病毒中观察到的变异是否可能具有适应性而有助于这种病毒传播感染。他们研究了从宿主细胞中释放的各种流感病毒,其中的一些流感病毒接受一种阻止NA发挥作用从而阻止病毒从宿主细胞中释放出来的物质---一种NA抑制剂---治疗。这就是抗病毒药物达菲(Tamiflu)的作用方式。如果流感病毒不能从宿主细胞中释放出来,它就不能传播和增殖。他们随后比较了从未接受这种NA抑制剂处理的宿主细胞中释放出来的病毒颗粒和从接受这种NA抑制剂处理的宿主细胞中释放出来的病毒颗粒。

    这两名研究人员发现较小的流感病毒,或者具有更多NA的流感病毒,更能抵抗这种NA抑制剂。它们更可能从接受达菲处理的宿主细胞中脱落下来,这样它们就能够接着感染更多的宿主细胞。这表明这两种变异---比平均值还要小的流感病毒,或者具有更多NA的流感病毒可能有助于它们在接受达菲治疗的患者体内站稳脚跟。

    他们还发现,具有更多HA的流感病毒,或者更大的流感病毒,能够更强地结合到宿主细胞上。在任何特定情形下,这可能对流感病毒都是有益的,比如在达菲治疗时,这种药物抑制NA发挥作用,这时流感病毒碰巧具有更多NA以及流感病毒碰巧更小时就有一点优势了。

    更广泛地说,Vahey说,“如果你所在的环境随着时间的推移而迅速变化,如果你依赖于遗传适应,那么你可能会遇到一些麻烦,这时因为突变需要一些时间才能积累。”但是表型多样性(phenotypic diversity)相对较快地产生变化。每次一个病毒增殖时,它的下一代都会显示出一系列变异,其中的一些变异可能让它适应于它自身所在的环境。在此过程中,表型的重要性可能对新型流感疫苗的开发产生影响。Vahey说,“通常在开发流感疫苗时,你担心流感病毒的遗传变化会如何降低疫苗的有效性。这可能还有一个额外的考虑因素,即流感病毒的表型变化。”

    参考资料:

    Michael D. Vahey et al, Low-Fidelity Assembly of Influenza A Virus Promotes Escape from Host Cells, Cell (2018). DOI: 10.1016/j.cell.2018.10.056.

  • 原文来源:http://news.bioon.com/article/6731387.html
相关报告
  • 《美研究揭示流感病毒如何成功地从宿主细胞中逃逸出来》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-12-21
    • 几十年来,科学家们已知道人体内的流感病毒与实验室中培养的流感病毒有很大不同。一种常用的研究流感病毒的方法就是将荧光蛋白与组成流感病毒的蛋白融合在一起。但是这些荧光蛋白与流感蛋白具有大约相同的大小,引入如此相对较大的融合蛋白到流感病毒中会引发病毒紊乱。 在一项新的研究中,为了解决这一挑战,美国华盛顿大学圣路易斯分校工程与应用科学助理教授Michael Vahey和加州大学伯克利分校生物工程主任Daniel A. Fletcher采用一种不同的方法对流感病毒蛋白进行标记。具体而言,他们改进了一种通常用于对蛋白上的一个特定区域进行标记的方法,即“位点特异性标记(site-specific labeling)”:并不使用一种荧光蛋白,而是将长5到10个氨基酸的短肽序列插入到组成甲型流感病毒的蛋白中;在插入这些短肽序列后,加入酶和少量荧光染料,这些酶获取不同的染料分子并将这些染料分子连接到流感病毒蛋白上,这样就能够观察单个流感病毒蛋白,同时又不破坏它们的功能,也不破坏由它们组成的流感病毒。相关研究结果近期发表在Cell期刊上,论文标题“Low-Fidelity Assembly of Influenza A Virus Promotes Escape from Host Cells”。 令这两名研究人员感兴趣的流感病毒蛋白是血凝素(hemagglutinin, HA)和神经氨酸酶(neuraminidase, NA)。HA让流感病毒附着到宿主细胞上,而NA让这种病毒从宿主细胞中脱落下来,这样它就能够接着感染其他的宿主细胞。 利用这种位点特异性标记方法,Vahey和Fletcher开展实验旨在了解在单个流感病毒中观察到的变异是否可能具有适应性而有助于这种病毒传播感染。他们研究了从宿主细胞中释放的各种流感病毒,其中的一些流感病毒接受一种阻止NA发挥作用从而阻止病毒从宿主细胞中释放出来的物质---一种NA抑制剂---治疗。这就是抗病毒药物达菲(Tamiflu)的作用方式。如果流感病毒不能从宿主细胞中释放出来,它就不能传播和增殖。他们随后比较了从未接受这种NA抑制剂处理的宿主细胞中释放出来的病毒颗粒和从接受这种NA抑制剂处理的宿主细胞中释放出来的病毒颗粒。 这两名研究人员发现较小的流感病毒,或者具有更多NA的流感病毒,更能抵抗这种NA抑制剂。它们更可能从接受达菲处理的宿主细胞中脱落下来,这样它们就能够接着感染更多的宿主细胞。这表明这两种变异---比平均值还要小的流感病毒,或者具有更多NA的流感病毒可能有助于它们在接受达菲治疗的患者体内站稳脚跟。 他们还发现,具有更多HA的流感病毒,或者更大的流感病毒,能够更强地结合到宿主细胞上。在任何特定情形下,这可能对流感病毒都是有益的,比如在达菲治疗时,这种药物抑制NA发挥作用,这时流感病毒碰巧具有更多NA以及流感病毒碰巧更小时就有一点优势了。 更广泛地说,Vahey说,“如果你所在的环境随着时间的推移而迅速变化,如果你依赖于遗传适应,那么你可能会遇到一些麻烦,这时因为突变需要一些时间才能积累。”但是表型多样性(phenotypic diversity)相对较快地产生变化。每次一个病毒增殖时,它的下一代都会显示出一系列变异,其中的一些变异可能让它适应于它自身所在的环境。在此过程中,表型的重要性可能对新型流感疫苗的开发产生影响。Vahey说,“通常在开发流感疫苗时,你担心流感病毒的遗传变化会如何降低疫苗的有效性。这可能还有一个额外的考虑因素,即流感病毒的表型变化。”
  • 《Cell:揭示新冠病毒在受感染的宿主细胞中启动病毒复制机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-10-17
    • 人们对 SARS-CoV-2 冠状病毒在感染过程中如何启动它的复制过程尚不完全清楚。在一项新的研究中,来自德国亥姆霍兹研究所等研究机构的研究人员首次发现人类蛋白 SND1 与SARS-CoV-2蛋白 NSP9 共同作用,激发了受感染细胞中的这种病毒基因复制程序。他们吃惊地发现,NSP9 是产生新病毒遗传物质的第一块基石。这些发现对进一步的基础研究意义重大,但也可能为治疗 COVID-19 和冠状病毒引起的其他传染病开辟新的途径。相关研究结果于2023年10月3日在线发表在Cell期刊上,论文标题为“SND1 binds SARS-CoV-2 negative-sense RNA and promotes viral RNA synthesis through NSP9”。 SARS-CoV-2 是导致 COVID-19 疾病的冠状病毒,迄今已造成全球近 700 万人死亡。这种 病毒的RNA基因组 含有构建新病毒拷贝的指令。当 SARS-CoV-2 感染宿主细胞时,它会接管细胞的基因表达机制来进行自我复制和增殖。这就需要构建多种类型的病毒 RNA,每种 RNA 在这种病毒的复制周期中都有特定的作用。 在这项新的研究中,论文通讯作者Mathias Munschauer领导的一个研究团队重点研究了不同的 SARS-CoV-2 RNA 与人类宿主细胞蛋白之间的相互作用。 Munschauer解释说,“虽然我们已经对这种病毒的自身蛋白的功能有了很多了解,但我们仍在研究受感染人体细胞中的蛋白如何影响SARS-CoV-2的复制能力。” 论文共同第一作者、Munschauer实验室博士后Nora Schmidt说,“我们发现,一种名为 SND1 的宿主蛋白能够识别一种特定类型的称为负链RNA的病毒 RNA。这种负链RNA 是扩增新病毒 RNA 分子的模板,但不会被翻译成蛋白。” 加入 SARS-CoV-2 教科书 经证实SND1 对这种病毒在人体细胞内有效复制病毒 RNA 至关重要。它不仅能与负链病毒 RNA 合成模板结合,还能与一种名为 NSP9 的病毒蛋白相互作用。 论文共同第一作者Yuanjie Wei高兴地报告说,“我们的研究发现了一个关键细节。在人类因子SND1的刺激下,这种病毒利用自身的蛋白NSP9作为引物,启动了RNA的产生。” 通过 SND1,这些作者描述了第一种被确认能够识别负链病毒 RNA 的宿主蛋白。他们还首次能够证实这种人类蛋白与 SARS-CoV-2 RNA 的结合及其与 NSP9 的相互作用有助于启动病毒复制。如果宿主因子 SND1 缺失,NSP9 启动病毒 RNA 合成的功能就会受损,病毒 RNA 的产生效率就会降低。 这些作者总结说,这些发现令人吃惊,促使人们对教科书中关于冠状病毒的知识进行更新。除了基础研究之外,未来医学也将受益于新的治疗靶标。此外,有证据表明,SND1 基因的罕见序列变异可能与严重的 COVID-19 感染和住院治疗有关。 在这种情况下,还需要进一步的研究。将来分析 SND1 和 NSP9 的功能是否在其他冠状病毒中得到保留,或者人类蛋白 SND1 是否也会刺激其他导致人类疾病的 RNA 病毒(如流感病毒或呼吸道合胞病毒)的复制,也将是一件有趣的事情。此外,未来的研究工作还需要阐明驱动 SND1 与 SARS-CoV-2 或其他冠状病毒的负链 RNA 结合的确切分子特征。 参考资料: 1. Nora Schmidt et al. SND1 binds SARS-CoV-2 negative-sense RNA and promotes viral RNA synthesis through NSP9. Cell, 2023, doi:10.1016/j.cell.2023.09.002. 2. Unexpected findings on SARS-CoV-2 replication https://www.helmholtz-hzi.de/en/news-events/news/view/article/complete/der-faktor-mensch/