《通过微米级血管系统记录大脑的超柔性血管内探针》

  • 来源专题:脑科学与类脑研究
  • 编译者: 苑亚坤
  • 发布时间:2023-09-28
  • 可植入的神经电子接口使神经系统疾病的基础研究和治疗取得了进展,但传统的颅内深度电极需要侵入性手术才能放置,并且可能会在植入过程中破坏神经网络。该研究开发了一种超小而灵活的血管内神经探针,可以植入啮齿动物大脑中亚100微米级的血管中,而不会损坏大脑或脉管系统。在皮层和嗅球中选择性地实现了局部场电位和单单位尖峰的体内电生理学记录。组织界面的组织学分析显示免疫反应最小,长期稳定性。该平台技术可以很容易地扩展为研究工具和医疗设备,用于检测和干预神经系统疾病。
相关报告
  • 《连续体机器人设计可实现1微米或更小的运动分辨率!》

    • 来源专题:数控机床与工业机器人
    • 编译者:icad
    • 发布时间:2019-11-21
    • 美国范德比尔特大学工程师设计的一种新型连续体机器人实现了多尺度运动,可能会打开一个以前不可能完成的复杂显微外科手术的巨大世界。   通过在结构内部添加可以滑入和滑出管状骨架的金属丝(红色),该多骨骼机器人可以增强具有微米级运动能力的微观运动工作空间。就尺度而言,一英寸包含25400微米一个人的红血球大约有8微米宽,与一些细菌的大小相同,并且明显小于人类头发的平均宽度。可以通过直接驱动,推动和拉动它们,连续运动中机器人的配置会发生变化。 图片来源:范德比尔特大学   “我们的设计通过使用廉价的执行器来实现1微米或更小的运动分辨率。这种重新配置(以最低的附加成本)可以加速新型外科手术机器人的开发,该机器人既可以进行手术干预的宏观运动,又能进行细胞水平成像或干预的微观运动,并且可以进行微尺度运动。”机械级教授兼高级机器人与机械应用实验室主任Nabil Simaan说。他说:“这极大地扩展了微创手术机器人的功能。”   微型化和活动范围允许在复杂的动脉瘤,微小的静脉和动脉,神经以及眼睛,内耳和声带的脆弱结构的手术过程中进行精确控制。潜在的应用包括活检,根除肿瘤和在细胞水平上靶向药物递送。   Simaan和他的团队通过改变机器人的平衡姿势,使他先前的连续体机器人的灵活体系结构适应了宏观和微观的要求,Simaan称其为具有平衡调制或CREM的连续体机器人。   以前的连续体机器人的灵活体系结构实现了像蠕虫一样的宏操作。机器人被分割成圆盘或圆环,就像worm的身体一样。每个圆盘通过微小的骨架或致动管连接在一起。通过在致动管内添加细小的弹性线并上下移动线,板的静态平衡会发生变化,从而在微米级产生运动。   范德比尔特外科工程学院的附属机构Simaan表示:“这种新型的机器人将在穿越宏大的弯曲路径到达手术部位的同时提供微精度,潜在的好处包括精确的组织重建和肿瘤的彻底手术根除。”   该机器人使用管状二级骨架来实现大规模运动。通过推和拉它们,连续机器人的配置发生变化,增加的线路可以滑进和滑出管状骨干,使研究小组能够调整平衡形状。   此外,目前他们正在进行广泛的测试,以便将光学相干断层成像技术(optical coherence tomography)纳入其中,这是一种有效的“光学超声”,可以从组织内部进行成像反射。   Simaan和他的同事,机械工程研究生Giuseppe Del Giudice,眼科学和视觉科学的研究助理教授,沉金慧和医师Karen M.Joos,Joseph N.和Barbara H.Ellis家庭眼科学教授已经完成了初步整合定制的OCT探针。   Joos的特别研究兴趣是将微型OCT探针与机器人手术工具一起使用,以改善眼内手术的可视化。Del Giudice的专长是微连续医疗机器人的设计和控制,尤其是眼科手术的微操纵。   Simaan说,通过提供显着提高的灵活性,可控制性和精确性给外科医生,甚至甚至开创了以前不可能的程序,扩展微型连续运动机器人在微尺度运动和靶向性方面扩展标准连续体机器人的功能可能会对显微外科手术产生深远影响。
  • 《微米级退火在GaN HEMT gate-first工艺中的应用》

    • 来源专题:半导体工艺技术
    • 编译者:shenxiang
    • 发布时间:2018-11-27
    • GaN与Si CMOS的集成实现了一种新型的数字辅助射频混合信号和功率调节电路。CMOS-first集成方法是最理想的方法,它需要低于450°C的处理温度以确保CMOS电子器件的性能和可靠性。对于GaN MOSFET,gate-first技术是通过自对准栅极工艺获得小存取电阻的一种有吸引力的方法。此外,由于没有欧姆金属,在氧化物沉积之前使用酸或碱溶液进行表面清洁的限制被减少。gate-first技术要求栅极氧化物和金属能够承受后处理过程中的高温加热。举例来说,Al2O3栅介质能够承受的最高温度是800 °C。然而,在800°C-900°C左右的快速热退火(rapid thermal annealing,RTA)是实现AlGaN/GaN异质结低接触电阻欧姆接触所必需的。这种高温工艺与用于GaN电子器件的CMOS-first集成方法和gate-first技术不兼容。 在追求低温的RTA技术外,华南理工大学的研究人员提出了探索局部的、微米级的退火方法作为另一种解决方案,该方法仅将能量传递到需要高温的区域(如图1所示)。因此,温度敏感部分(如Si CMOS、栅金属和氧化物)可以防止热损伤。用脉冲激光获得了GaN高电子迁移率晶体管(HEMT)的欧姆接触。然而,脉冲激光器并不能聚焦用于选择性退火,整个器件皆处于高功率激光脉冲下。因此,对GaN HEMT进行微米级退火和揭示微米级退火的独特特性是十分必要的。 图1 微米级退火示意图 研究人员报道了用聚焦激光在GaN异质系统/器件中欧姆接触的微米级退火方法。微米级的退火方法使得在金属-半导体界面上形成相对厚的TiN(35 nm),因此获得了0.3 Ω⋅mm的低接触电阻。将小型化退火方法应用于GaN HEMT的gate-first方法,获得了电流输出大、栅漏小(要小1×106倍)、动态范围大的HEMT器件。 图2 分别用700°C RTA、微米级退火和gate-last方法处理的器件的输出(A、B和C)和传输特性(D、E和F)。 相关研究发表在《IEEE Electron Device Letters》,2018, 39 (12):1896- 1899, DOI: 10.1109/LED.2018.2877717,题目:“Micron-Scale Annealing for Ohmic Contact Formation Applied in GaN HEMT Gate-First Technology”。