《研究揭示发育过程中心脏瓣膜间充质细胞的起源及动态变化》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-10-15
  •         8月15日,国际学术期刊Development在线发表了中国科学院生物化学与细胞生物学研究所周斌研究组的科研成果“Dual genetic tracing system identifies diverse and dynamic origins of cardiac valve mesenchyme”。该研究首次基于Nigri-nox同源重组构建转基因工具小鼠,并利用Nigri-nox和Cre-loxP系统构建了更为精准的双同源重组系统,具有能够在体内同时标记并示踪两群独立的干细胞群能力,并利用此新系统揭示了心脏瓣膜间充质细胞的起源及动态变化。Nigri-nox系统与传统的Cre-loxP系统相结合在体内的成功应用为发育、疾病和再生研究提供了更多的技术选择。

      基于位点特异性同源重组(SSR)系统的遗传谱系示踪技术被广泛用于器官发育、疾病及组织再生研究。目前,多种SSR系统被普遍使用,例如Cre-loxP、Flpe-frt和Dre-rox,使用最普遍的是Cre-loxP系统,当Cre被组织特异性基因的启动子驱动后,Cre表达并识别两个同向的loxP位点,将两个loxP位点之间的转录终止序列切除,从而使转录终止序列后的报告基因正常表达,由于这种切除位于基因组上,具有永久性和不可逆性,因此,所有表达过Cre的细胞群及其子代细胞(无论是否还在表达Cre)都将永久性地被报告基因蛋白所标记。基于这一特性,SSR系统被广泛用于细胞起源和命运研究,开发出新的SSR系统也会极大地拓宽谱系示踪技术的选择空间。

      但是生命体的发育过程极其复杂,不同组织的细胞起源及命运具有多向性和交叉性。虽然Cre-loxP系统已被普遍使用,然而Cre通常与传统的单一报告基因(例如Rosa26-LacZ、Rosa26-tdTomato、Rosa26-GFP)结合使用,Cre被启动子驱动后可使表达Cre的细胞表达一种相应的报告基因,即只能标记并示踪一种细胞类型,这对于生命体复杂的发育、疾病、再生研究是远远不够的。虽然前人基于不同的SSR系统已经开发了多种双系统(或多系统)致力于体内精确的谱系示踪研究(例如R26::FLAP, RC::Fela, R26NZG, RC::FrePe, RC::RLTG),这些系统可归为同一类型,即适用于标记示踪某干细胞群及其亚群这两种细胞类型,而并不具备标记两类独立的干细胞群能力。而开发出一种新的能够同时标记两群独立细胞群的谱系示踪技术对于发育和再生医学研究极其重要。

      为了填补这一技术空白,并开发新的可以应用于体内基因编辑的SSR系统。周斌研究组的科研人员基于Nigri-nox同源重组系统构建了世界上第一只体内受Nigri-nox系统调控的转基因工具小鼠——Cdh5-Nigri小鼠;并将Nigri-nox系统与传统的Cre-loxP系统结合起来,开发了一种可用于体内同时标记示踪两群独立细胞群的新的谱系示踪系统,称之为R26-NLR(Rosa26-nox-loxP-reporter)。R26-NLR报告基因小鼠上包含两个nox位点和两个loxP位点以交错形式存在(nox-loxP-Stop-nox-ZsGreen-polyA-loxP-tdToamto),Cre同源重组酶介导loxP重组使报告基因tdTomato表达,Nigri同源重组酶介导的nox重组使报告基因ZsGreen表达,当Cre和Nigri同时被两种独立的细胞特异性启动子驱动后,可实现在体内同时标记并示踪这两群独立的干细胞类群。标记何种细胞类群完全取决于Cre和Nigri序列之前的启动子,脱离了前人开发的双系统技术的限制。

      为了进一步展示R26-NLR新系统的优势,研究人员利用这一系统探究了在小鼠心脏发育过程中瓣膜间充质细胞的起源及动态变化。哺乳动物心脏包括四组瓣膜,包括两组房室瓣膜(二尖瓣和三尖瓣),两组半月瓣(主动脉瓣和肺动脉瓣)。前人的研究证明房室瓣膜间充质细胞主要来源于心脏心内膜和心脏心外膜,而半月瓣间充质细胞主要来源于心脏心内膜和神经嵴细胞。为了更方便地在同一个体观察相应的两群干细胞群对瓣膜发育贡献的动态变化,研究人员将R26-NLR系统与Tbx18-Cre小鼠(标记心脏心外膜)和Cdh5-Nigri小鼠(标记心脏心内膜)交配得到能够同时标记心脏心外膜和心脏心内膜的Tbx18-Cre;Cdh5-Nigri;R26-NLR三基因型小鼠,通过对小鼠发育各个时间点的取样分析,发现这两群干细胞对房室瓣膜的贡献是动态变化的,E14.5之前,二尖瓣和三尖瓣的腔壁侧瓣膜(与心室壁相接触)间充质细胞主要来源于心内膜,E14.5天之后,随着瓣膜发育,自瓣膜近端到远端逐渐被心外膜分化来源(EPDCs)的间充质细胞所替代,这种细胞更替现象能够一直持续到出生后P7天左右,而二尖瓣和三尖瓣的室间隔瓣膜(与室间隔相接触)间充质细胞从瓣膜开始形成到出生后基本都来源于心脏心内膜。同时,研究人员还获得了Wnt1-Cre;Cdh5-Nigri;R26-NLR三基因型小鼠,在体内同时标记示踪神经嵴细胞(Wnt1-Cre)和心内膜细胞,通过对小鼠发育各个时间点取样分析,发现半月瓣发育中间充质细胞来源的动态变化与房室瓣不同,在发育早期(E13.5左右),主动脉瓣膜间充质主要起源于神经嵴细胞,随着瓣膜发育直到小鼠出生后,神经嵴细胞来源的比例降低,心内膜来源的比例升高,但是并不会被全部替换掉,最终保持3:2左右比例,而肺动脉瓣发育中没有观察到类似的动态变化,基本一直保持3:1左右比例。R26-NLR系统在体内研究的成功应用展现了其在解决多细胞起源科学问题中的应用前景,而且也为更加准确的谱系示踪技术提供了可靠的技术思路。

      该研究工作在研究员周斌的指导下,由研究生刘扩等完成,得到了香港中文大学教授吕爱兰、美国加州大学教授Sylvia Evans等的大力支持,同时得到中国科学院、国家基金委、国家科技部、上海市科委等的资助。

相关报告
  • 《干细胞研发动态》

    • 来源专题:广东省干细胞与组织工程技术路线图信息服务平台
    • 编译者:wuyw
    • 发布时间:2019-05-14
    • 目录 科技前沿 Nature:重磅!首次在培养皿中培养出完美的人类血管 Nature:揭示一种调节神经干细胞的新机制 Nature:挑战常规!发现骨骼生长新机制-生长板中存在干细胞壁龛 Cell:新研究有望增加干细胞重编程效率 焦点关注 “干细胞制剂制备与质检行业标准”上海“出炉” 我国首个胚胎干细胞产品标准《人胚胎干细胞》标准发布 信息扫描 Nature Biotechology:CRISPR 给iPS 披上隐身衣!破解移植排斥难题! Nature Biotechnology:可注射的海绵状凝胶促进T 细胞再生 Nature Genetics:中国科学家发现肺多能干细胞参与肺脏再生 Nature Neuroscience:研究发现肌萎缩侧索硬化症的发病机制 Nature Communications:广州生物院等阐明基因组中转座元件的关键调控机制 Cell Stem Cell:首次!利用基因编辑获得遗传增强人类血管细胞 Cell Stem Cell:重大突破!首次诱导多能干细胞产生杀死肿瘤细胞的成熟T 细胞 Stem Cell Reports:利用人干细胞治疗糖尿病取得新进展 Stem Cell Reports:科学家在小鼠体内成功制造出可供移植的功能性B 细胞 Stem Cell Reports:利用iPS 开发出可工作的三维人工血脑屏障 Cell Reports:肌肉干细胞也能够驱动癌症的发生 Cell Reports:研究发现靶向根除白血病干细胞新策略 Neuron:发现神经干细胞参与脑发育作用机制 Cancer Cell:癌细胞变肥肉!科学家用两个已获批的药物,成功将易转移的癌细胞变 成脂肪细胞,阻断癌症转移 Stem Cell Research & Therapy:间充质干细胞可用于修复器官损伤 PNAS:揭示蛋白JAG1 在癌症干细胞分化和转移中起关键作用 PNAS:细胞替代疗法可用于治疗肌营养不良症 PNAS:新研究揭示纳米颗粒在人类干细胞中的生物降解过程 Circulation:研究揭示成体Sca1+心脏干细胞的分化潜能 Genes & Development:揭秘乳腺癌细胞可塑性产生的分子机制 Journal of Parkinson's Disease:干细胞疗法有助于缓解帕金森症 Cancer:自体干细胞移植显著延长淋巴结周围T 细胞淋巴瘤患者生存期 Gene Therapy:科学家开发出高效重编程干细胞的新型系统 Communications Biology:年轻小鼠骨髓能够提高老年小鼠大脑的活性 Current Biology:科学家们揭示果蝇器官发育机制 世界首例人胚胎干细胞分化功能细胞治疗半月板损伤 干细胞治疗糖尿病!第一三共/三菱UFJ/东京工业大学合作利用iPSC 创造胰腺β 细 胞 干细胞治疗急性呼吸窘迫综合征:减少死亡和重症监护时间 产业动态 一款干细胞疗法被FDA 看好 有希望加速审批 日本开展临床试验利用干细胞疗法治疗脊椎损伤 前景可观!全球干细胞治疗迅速发展 基因魔剪!CRISPR/Cas9 基因编辑造血干细胞疗法CTX001 I/II 期临床完成首例患 者给药 专利信息 最新授权发明信息
  • 《Nature︱空间组织的细胞群落形成了发育中的人类心脏》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-03-16
    • 2024年3月13日, 加州大学圣地亚哥分校 Neil C. Chi 教授、Quan Zhu 教授等在 Nature 期刊发表了题为Spatially organized cellular communities form the developing human heart 的研究论文。该研究绘制了发育中人类心脏的高分辨率的单细胞和空间心脏细胞图谱,揭示了不同心脏细胞类型如何相互作用并组织成为对心脏功能至关重要的复杂心脏结构。 在这项研究中国,研究团队结合单细胞分析与空间基因表达数据,成功组装出单细胞分辨率的发育中的人类心脏空间图谱,揭示了广泛的心脏细胞亚群的区域分布,以及这些细胞在心脏发育中如何相互作用。单细胞分析识别出75个细胞亚群,这些亚群展现出与其解剖位置和发育阶段对应的特征,其中包括心脏瓣膜里的新细胞亚型。研究团队使用一种叫做MERFISH的空间成像方法,通过对单细胞中数百至数千个特定基因同时成像,初步实现了对单个细胞的空间识别。与单细胞转录组学相结合,这些数据让研究者可以将全转录组映射到初步空间图谱上,提供了前所未有的分辨率和深度来理解单个细胞及其所在。 该研究发现了细胞群的特定组合之间的相互作用,揭示了驱动不同心脏结构发育的信号模式。例如,他们观察到心室心肌细胞、成纤维细胞(结缔组织的一部分)和内皮细胞(血管组成部分)之间的相互作用,可能在心室壁的形成中发挥了作用。 总的来说,这项研究揭示出的详细信息,或有助于改进我们对先天和成人心脏病机制的理解,也可能为心脏修复指引新策略。