《10个方向入选生态与环境科学领域《2024研究前沿》》

  • 来源专题:水与大气环境治理
  • 编译者: 胡晓语
  • 发布时间:2024-11-29
  • 2024年11月27日, 中国科学院科技战略咨询研究院、中国科学院文献情报中心和科睿唯安在北京举办“2024研究前沿发布暨研讨会”, 联合发布了《2024研究前沿》报告,遴选出2024年自然科学和社会科学11大学科领域中排名最前的110个热点前沿和15个新兴前沿 。 报告为科研管理者和政策制定者提供了全球科研的最新进展和动态,帮助他们以有限的资源来支持和推进科学进步。 生态与环境科学领域的10热点前沿上榜 新污染物、 气候变化等热点问题机理研究和应对方案研究不断深入, 生物多样性和 生物保护成为全球关注议题。

    10个 热点前沿关注主题: 微塑料(2个:人体组织微塑料污染的发现与定量检测,轮胎磨损颗粒的环境归趋与生态毒理), 固碳技术(2个:二氧化碳和氨气高效催化合成尿素技术,二氧化碳直接空气捕获的技术经济评估), 污染物消除(用于污染物降解的过氧单硫酸盐活化剂及活化机制), 环境友好材料(聚羟基脂肪酸酯生物塑料的生产、应用及生物降解特性), 环境流行病学(废水中新冠病毒检测及基于废水的流行病学监测,人类活动导致的生态环境问题与人畜共患病的关系及相关风险), 生态科学(全球昆虫衰退现状、驱动因素与解决方案,群体基因组学在野生生物保护和管理中的应用)。

  • 原文来源:http://mp.weixin.qq.com/s?__biz=MjM5MTA4MDc3Ng==&mid=2653748641&idx=1&sn=47403954408199c9304d274ce640265b&chksm=bc41af8e4c914137a6570d1967eec39487a92bebe9a237bf32bcd7327c996c371e39c1ee4b6b#rd
相关报告
  • 《病毒学领域前沿速递》

    • 来源专题:中国科学院病毒学领域知识资源中心
    • 编译者:wuyw
    • 发布时间:2019-03-23
    • 1.Nature:汉坦病毒肺综合征死亡率高达40%!新研究鉴定出汉坦病毒入侵宿主细胞所需的受体 doi:10.1038/s41586-018-0702-1 汉坦病毒(hantavirus)引起严重的有时是致命性的呼吸道感染,但是它们如何感染肺细胞一直是个谜。在一项新的研究中,来自美国、荷兰、德国、加拿大、法国、智利和奥地利的研究人员报道汉坦病毒通过让一种称为原钙黏蛋白-1(protocadherin-1, PCDH1)的细胞表面受体暴露出来而侵入肺细胞中。剔除肺细胞上的这种受体让实验动物高度抵抗汉坦病毒感染。这些发现表明靶向PCDH1可能是抵抗一种抵抗致命性的汉坦病毒肺综合征(hantavirus pulmonary syndrome, HPS)的有用策略。相关研究结果发表在2018年11月22日的Nature期刊上,论文标题为“Protocadherin-1 is essential for cell entry by New World hantaviruses”。论文通讯作者为荷兰癌症研究所的Kartik Chandran博士和Thijn R. Brummelkamp博士、美国陆军传染病医学研究所的John M. Dye博士和美国犹他州立大学的Zhongde Wang博士。 在寻找能够引起汉坦病毒感染的宿主因子时,这些研究人员进行了“功能丧失”遗传筛选,以便确定敲除特定细胞基因是否能够阻止汉坦病毒入侵。这种筛选让基因PCDH1备受瞩目,其中这个基因编码在细胞膜上发现的蛋白受体PCDH1。引人注目的是,人们之前就已发现PCDH1参与人类呼吸功能和肺部疾病,但是并不知道它是否在汉坦病毒或任何其他病毒感染中发挥作用。 为了证实PCDH1在汉坦病毒感染中发挥作用,这些研究人员将它从人肺内皮细胞中剔除。这些细胞对在北美和南美发现的两种主要的引起HPS的汉坦病毒---辛诺柏病毒(Sin Nombre virus)和安第斯病毒(Andes virus)---的感染产生高度的抵抗性。至关重要的是,叙利亚金仓鼠(用于汉坦病毒研究的主要啮齿动物模型)经基因改造后缺乏PCDH1受体后,对安第斯病毒引起的感染和肺部损伤产生很大的抵抗性。相反之下,大多数具有这种受体的对照动物死于这种病毒感染。他们还确定了在PCDH1蛋白中,汉坦病毒直接识别的的特定部分,这就使得这个蛋白区域成为药物开发的一个有希望的靶点。事实上,他们已构建出对PCDH1的这个区域具有高度亲和力的单克隆抗体,这些抗体能够与肺内皮细胞结合,从而保护它们免受安第斯病毒和辛诺柏病毒感染。正在进行的研究正在动物中评估这些抗体是否抵抗汉坦病毒感染及其引起的疾病。 令人关注的是,在欧洲和亚洲以及偶尔在美国引起严重肾脏疾病的另一组汉坦病毒并不需要PCDH1受体进行感染。 2.Autophagy:研究发现EB病毒通过调控细胞自噬躲避免疫监视新机制 doi:10.1080/15548627.2018.1536530 之前有报道在体外实验中发现EB病毒能够损伤单核细胞向树突状细胞的分化过程,并降低细胞存活能力。来自意大利的研究人员在国际学术期刊Autophagy上发表的一项最新研究进展又增加了人们对这一问题的认识,他们发现上述现象与自噬,ROS水平下降和线粒体生成能力的下降有关。值得注意的是,虽然细胞自噬和ROS在细胞内存在很强的关联性,但这两者都各自被报道能够被CSF2/GM-CSF所诱导,CSF2-IL4-驱动的单核细胞向树突状细胞分化过程需要自噬和ROS。 在这项研究中,研究人员发现EB病毒感染单核细胞后启动了一个反馈回路,通过抑制细胞自噬,降低ROS水平,而ROS水平的下降又会对自噬产生负向调控。从机制上来说,自噬的减弱与RAB7和ATG5表达水平的下调以及STAT3的激活有关,导致SQSTM1/p62的积累。SQSTM1/p62的积累会激活SQSTM1-KEAP1-NFE2L2信号轴并上调抗氧化应答,降低ROS水平进一步抑制细胞自噬。 ROS水平下降与线粒体的减少有关,而线粒体是细胞内ROS的主要来源,该研究表明线粒体的减少是NRF1和TFAM这两个线粒体生成转录因子的表达下调所导致。有趣的是,线粒体能够提供自噬所需的膜成分和ATP,因此线粒体的减少会进一步抑制被EB病毒感染的单核细胞内的自噬水平。 3.PNAS:重磅!科学家阐明塞内加谷病毒的新型抗癌机制 doi:10.1073/pnas.1810664115 近日,一项刊登在国际杂志Proceedings of the National Academy of Sciences上的研究报告中,来自新西兰奥塔哥大学和日本冲绳科技学院的科学家们通过研究利用高分辨率电子显微镜成像技术揭示了一种称为塞内加谷病毒(Seneca Valley virus,SVV)的抗癌病毒与肿瘤细胞相互作用的机制,这或为后期科学家们开发新型抗癌疗法挽救患者生命提供了新的思路。 图片来源:virology.wisc.edu 这项研究中,研究者们利用冷冻电镜技术捕获到了病毒与其受体相结合的成千上万张图像,随后利用这些图像构建出了病毒-受体复合体的高分辨率结构,研究者发现,塞内加谷病毒能够有效区分其钟爱的受体(癌细胞)及其它类似的蛋白质(健康组织),研究者Mihnea Bostina说道,我们能够精确观察到病毒如何撕碎癌细胞,而同时正常的细胞并不会受到影响;这种病毒是一种强大的竞争者,因为其能选择性地靶向超过60%以上的人类癌症组织中肿瘤细胞上的受体。 这种名为ANTXR1的受体能在肿瘤中进行表达,但其还有一种名为ANTXR2的表兄弟,ANTXR2受体只会在健康组织中出现,塞内加谷病毒并不会与健康细胞表面的ANTXR2受体结合,其仅会对癌细胞所表达的ANTXR1受体表现出较高的亲和力;如今研究者在临床实验中发现塞内加谷病毒具有抗癌潜能,但有一个问题,就是人体会在几周内对病毒产生免疫力。 4.PLoS Pathog:科学家阐明致癌人类乳头瘤病毒的进化奥秘 doi:10.1371/journal.ppat.1007352 近日,影响刊登在国际杂志PLoS Pathogens上的研究报告中,来自中国香港大学和阿尔伯特-爱因斯坦医学院的科学家们通过研究发现,致癌的人类乳头瘤病毒(HPVs)大约在50万年前由其最近的共同祖先分化而来,这或与古老的尼安德特人和现代智人分裂的时间大致吻合。 流行病学研究结果表明,HPVs的持续感染是引发前期宫颈癌及其相关癌症的主要原因,但研究人员一直并不清楚致癌HPVs的起源和进化过程,为了更好地解HPV16和其它类型致癌HPV的分子进化过程,这项研究中,研究人员从灵长类动物机体中对HPV进行分离,并对病毒的基因组进行的分析,从而就能够估测致癌HPV突变体从其最近共同祖先的分化时间。 研究结果表明,致癌HPV进化的第一个阶段就是病毒在宿主生态系统中的生境适应,随后病毒就会与其灵长类宿主共同进化至少4000万年;基因组分析结果表明,大约在50万年前,HPV16病毒变种开始与其最近的共同祖先出现古老的分化差异,这或与古老的尼安德特人和现代智人分裂的时间大致吻合。 5.Science:当心!PPR病毒威胁野生动物保护 doi:10.1126/science.aav4096 在最新的一期Science期刊上,来自英国皇家兽医学院,美国野生动物保护协会、联合国粮农组织和奥地利维也纳兽医大学的一小群环保主义者发表了一篇标题为“PPR virus threatens wildlife conservation”的来信类型(Letter)文章,该文章着重关注小反刍兽疫病毒(peste des petits ruminants virus, PPR)对野生动物保护的危害。 PPR病毒导致绵羊和山羊患上一种病毒性疾病,并且对农村地区的生计、生物多样性保护以及国家和全球经济产生重要的影响。在中东和东亚的草原和山地上,野生有蹄类动物多次发生了大规模死亡事件,这引发了人们关于这种病毒影响野生动物保护的重大担忧。 2017年,三分之二以上的极度濒危的蒙古赛加羚羊(Mongolian saiga)发生大规模死亡,这是PPR病毒对野生动物带来威胁的一个戏剧性的例子。对于蒙古赛加羚羊来说,情况尤其糟糕,这是因为在不到两年的时间里,它们因传染病发生第二次大规模死亡事件,这显著地逆转了数十年的保护工作。 6.Cell:靶向攻击神经元的病毒是导致肠道蠕动障碍的罪魁祸首 doi:10.1016/j.cell.2018.08.069 在一项新的研究中,来自美国华盛顿大学、耶鲁大学和宾夕法尼亚大学的研究人员发现诸如西尼罗河病毒和寨卡病毒之类的靶向大脑和脊髓中的神经系统的病毒也能够杀死小鼠肠道中的神经元,扰乱肠道蠕动,造成肠道堵塞。其他感染神经元的病毒也可能导致相同的症状。相关研究结果于2018年10月4日在线发表在Cell期刊上,论文标题为“Intestinal Dysmotility Syndromes following Systemic Infection by Flaviviruses”。这些发现可能解释着为何一些人会反复出现难以预测的腹痛和便秘症状,并且可能指出了一种阻止这些症状的新策略。论文通信作者为华盛顿大学医学院实验室与基因组医学教授Thaddeus S. Stappenbeck博士和华盛顿大学医学院医学教授Michael S. Diamond博士。 White、Diamond、Stappenbeck及其同事们发现不仅西尼罗河病毒,而且与它存在亲缘关系的寨卡病毒、玻瓦桑病毒(Powassan virus)和昆津病毒(Kunjin virus)---它们与西尼罗河病毒一样都靶向神经系统---都导致肠道扩张,延缓废弃物通过肠道。相比之下,基孔肯雅病毒(chikungunya virus)---一种不相关的不靶向神经元的病毒---不会导致肠道功能障碍。 进一步的研究表明,当将西尼罗河病毒注入小鼠的脚中时,它通过血液循环在体内迁移,从而感染肠壁中的神经元。这些神经元协调肌肉收缩,将废弃物顺利地排出肠道。一旦遭受感染,这些神经元就会引起免疫细胞的注意,也因此,这些免疫细胞会攻击这种病毒并杀死这些被感染的神经元。这些研究人员指出,任何有攻击神经元倾向的病毒都可能造成这种损伤。 7.Cell:一种非典型病毒可导致某些肾脏疾病 doi:10.1016/j.cell.2018.08.013 在一项新的研究中,来自多个研究机构的研究人员发现一种之前未知的病毒起着作为某些肾脏疾病---间质性肾病(interstitial nephropathy)---的“驱动因素”的作用。这种“非典型”病毒被他们命名为小鼠肾脏细小病毒(Mouse Kidney Parvovirus, MKPV),属于细小病毒科。相关研究结果于2018年9月13日在线发表在Cell期刊上,论文标题为“An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis”。论文通信作者为奥地利维也纳医科大学免疫学专家Wolfgang Weninger和澳大利亚悉尼大学的Ben Roediger。 Weninger解释道,“在过去几年中,一种自发性肾脏疾病发生在我们研究所的实验室小鼠中。具体而言,免疫缺陷小鼠,即具有先天性免疫系统疾病的小鼠,突然和过早地死于这种疾病。我们能够指出这种疾病是肾小管出现问题。”这种所谓的间质性肾小管病(interstitial tubulopathy)是由MKPV引发的。“这种由MKPV诱导的肾病非常类似于一种病毒性肾小管病(viral tubulopathy),其中这种病毒性肾小管病能够发生在肾移植患者身上。” 8.Nat Commun:挑战常规!揭示致命性尼帕病毒的组装秘密 doi:10.1038/s41467-018-05480-2 在一项新的研究中,来自加拿大英属哥伦比亚大学和美国康奈尔大学的研究人员发现致命性的尼帕病毒(Nipah virus)和其他的类似病毒以一种更加随意的方式进行自我组装。这一发现可能允许科学家们开发出更有效的疫苗和排除很多抵抗这些病毒的方法。相关研究结果近期发表在Nature Communications期刊上,论文标题为“A stochastic assembly model for Nipah virus revealed by super-resolution microscopy”。论文通信作者为英属哥伦比亚大学化学教授Keng Chou。 尼帕病毒有三种结构蛋白:一种提供结构支持的基质蛋白,以及两种能够让这种病毒与宿主细胞结合并融合在一起的包膜蛋白。科学家们认为,基质蛋白“招募”包膜蛋白,发出某种信号,这样它们就能够在细胞膜上连接在一起,从而成为一种功能性的病毒。人们试图找出这一信号,以便希望找到破坏这个过程的方法。然而,Chou和他的团队观察到包膜蛋白倾向于随机地散布在细胞膜上。他们如今相信当这些蛋白被整合到病毒中时,它们是随意地被获取的。这会比之前设想的更快地产生病毒颗粒,但是许多基质蛋白根本不会获取这些包膜蛋白,因而就不会成为功能性的病毒。 这一观察结果对疫苗接种(不仅是抵抗尼帕病毒,而且还潜在地抵抗流感病毒、HIV和其他的包膜病毒)产生影响。疫苗通过让人接触少量经过修饰的病毒或病毒蛋白来起作用。当前,还没有批准用于人体使用的尼帕病毒疫苗。正在开发的潜在策略之一是使用病毒样颗粒来刺激免疫反应,其中病毒样颗粒是模拟病毒的基于蛋白的结构。 9.PLoS Pathog:狂犬病毒感染神经细胞的机制 doi;10.1371/journal.ppat.1007188 为了成功地感染宿主,狂犬病毒需要进入神经元胞体中进行复制。在最近发表在《Plos Pathogen》杂志上的一篇文章中,来自普林斯顿大学的研究者们发现狂犬病毒相比其它侵染神经元的病毒存在很大区别,而且能够被一类治疗痢疾的药物阻断其侵染活性。 大部分病毒仅仅在宿主免疫系统受限的时候偶然入侵神经系统,但一些特异性病毒则能够靶向识别神经元细胞并进行复制与侵染。狂犬病毒在宿主被咬伤之后传播进入肌肉组织,之后进入肌肉组织附近的神经元末梢。之后,病毒能够传播到整个运动神经元系统以及唾液腺中。 在这项研究中,作者用荧光蛋白对狂犬病毒进行标记,并且进行神经元感染。与其它病毒不同,作者发现干扰素并不会影响狂犬病毒的转运,其中原因可能是由于病毒颗粒在转运过程中是包裹在胞内体中的。此外,作者发现一类叫做Emetine的蛋白质合成抑制剂能够阻断狂犬病毒从神经元末梢向胞体的转运。 10.PLoS Pathog:首次揭示奥罗普切病毒在人细胞中的复制机制 doi:10.1371/journal.ppat.1007047 人们对来自病毒科Peribunyaviridae的病毒复制机制知之甚少。从公共卫生的角度来看,它们是重要的病原体。在巴西,在病毒科Peribunyaviridae中,仅奥罗普切病毒(Oropouche virus)感染引起疾病,而导致出血热的拉克罗斯脑炎病毒(La Crosse encephalitis virus)和克里米亚刚果病毒(Crimean Congo virus)在世界其他地区流行。此外,这个病毒科的其他一些成员在牛群中引发疾病。 在一项新的研究中,为了研究奥罗普切病毒在人细胞中的复制机制,来自巴西圣保罗大学和德国图宾根大学医院的研究人员利用源自人宫颈癌细胞的HeLa细胞在体外开展实验。一旦这些细胞被奥罗普切病毒感染,这种病毒就开始产生招募宿主ESCRT蛋白复合物到高尔基体外膜上的蛋白。ESCRT蛋白复合物随后推压高尔基体外膜,导致它破裂,从而携带着病毒基因组进入高尔基体中。因此,这种病毒在高尔基体内复制。随后可能发生的情况是在一段时间后,发生变化的充满着病毒的高尔基体与细胞膜融合,从而将这些病毒释放到胞外基质中。相关研究结果近期发表在PLoS Pathogens期刊上,论文标题为“ESCRT machinery components are required for Orthobunyavirus particle production in Golgi compartments”。论文通信作者为圣保罗大学的Eurico Arruda和Luis L. P. daSilva。 在这项新的研究中,这些研究人员在实验室中对HeLa细胞进行基因操纵,使得它们不再表达一种重要的被称作Tsg101的ESCRT蛋白。为此做到这一点,他们采用了RNA干扰技术,即一种通过导入短RNA序列到细胞中来阻断基因表达的方法。 daSilva说,“这种干预使得HeLa细胞更强有力地抵抗奥罗普切病毒感染。它们需要更长的时间才能死亡,而且具有更少的病毒载量。已存在抑制Tsg101的实验性药物,而且我们如今要测试它们抵抗奥罗普切病毒感染的能力。”他补充道,鉴于Tsg101在人细胞的正常功能中起着关键的作用,因此可能无法使用抑制它或其他的ESCRT蛋白的药物来治疗患者。毕竟,不良副作用的风险可能是相当大的。
  • 《海洋领域前沿科学和工程技术十大难题发布!》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:张灿影
    • 发布时间:2019-10-10
    • 海洋领域前沿科学和工程技术十大难题 海洋多尺度能量串级与输运 海洋中包含着各种空间尺度的运动,上至海盆尺度的大洋环流,下至微尺度上的湍流运动。海洋运动的能量主要输入于环流尺度,而能量耗散则发生在湍流尺度。为了维持海洋的平衡态,能量必须从环流尺度跨越近10个数量级传递到湍流尺度(即能量串级)。能量向小尺度的串级过程,涉及不同运动形式间强烈的非线性相互作用,并深刻影响着环流、涡旋和湍流运动等所引起的物质和热量输运。上述多尺度能量串级与输运过程是贯穿整个海洋学研究的核心科学问题,同时也是经典难题。海洋环流和涡旋的平衡状态如何打破,从而实现能量向小尺度非平衡运动的传递?深海大洋湍流混合的时空分布特征和驱动机理是什么,在数值模式中又如何参数化其对环流和气候的影响?海-气和流-固相互作用在海洋多尺度能量串级与输运过程中扮演者怎样的角色?这些都是当前海洋研究亟待解决的难点问题。 深海大洋与地球宜居性 地球宜居性决定着人类的生存,而深海大洋是决定地球宜居性的重要标准,是维持人类以及其他复杂生命体生存时间长度的重要因素。近半个世纪以来,深海大洋吸收了整个地球气候系统中超过90%的热量盈余以及超过30%的人类活动排放的CO2,从根本上减少了进入地球系统的净辐射,从而减缓了全球变暖的速率,维持了赖以生存的食物链来源和地球生态系统的平衡。然而,深海大洋对热量和CO2的极限吸收能力是多少?是否存在拐点?对热量与CO2的吸收如何改变海洋的动力和生物地球化学环境?又如何进一步影响全球极端气候、海平面、生态系统以及深海资源格局?这些关键问题与未来地球的宜居性息息相关。 海洋观测与探测技术 海洋观测与探测是认识海洋与经略海洋重要支撑。当前海洋观测与探测领域正向多学科、全海深、精细化、网络化、小型化、低能耗和智能化等方向发展,涉及大数据分析、人工智能、传感器、推进和驱动、先进材料、自主控制、先进制造、可持续能源、海洋通讯技术等新型学科、行业和领域。特别地,基于人工智能的大数据分析技术已成为海洋观测技术创新的驱动力量。如何发展新技术,实现全球、长期、连续、实时、综合、精细、低成本的智能海洋观测与探测是目前面临的巨大挑战。卫星遥感与水下无人技术是最重要两种手段。然而截至目前,尚未找到一种有效的手段可以实现对海洋上层几百米长时间、全海域、高时空分辨的卫星观测。星载海洋激光雷达虽被认为是当前最有望实现这一目标的技术途径,但其在大洋清洁水体的最大极限穿透深度尚不足以满足海洋上层的实际探测需要。借助太赫兹、中微子和磁极波等相关新技术的突破,实现全球海洋上几百米遥感探测是卫星遥感与海洋观测面临的难题与挑战。21世纪以来,水下无人观测技术虽有长足发展,但距全球范围、全水深、多学科、长时间的智能观测尚有巨大差距。新型材料、新能源技术、新型制造技术和新型通讯技术并结合人工智能大数据融合,发展具有“自主学习能力”的智能观测设备,是实现未来海洋观测的重要机遇和挑战。 海洋与地球系统变化预测 海洋是地球系统的关键组成部分,准确、精细地预测海洋与地球气候系统的变化是科学应对和减缓全球气候变化的关键手段。经济社会可持续发展不仅要求将所有地球系统分量耦合在一起模拟预测大尺度气候信息,也要求能准确预报预测局地的海洋、大气等信息以及无缝隙地预报预测天气气候现象。这要求地球系统模式的解析度从百公里级精细到公里级,物理过程从大尺度平均近似的参数化描述上升到如对台风、中小尺度涡旋、海浪破碎等细节性过程的显式描述。海洋数值模式是海洋研究与服务功能的基础性平台,其研制涉及到计算数学、物理海洋、海洋生态、海洋生物地球化学、大气科学和计算机科学等多学科之间的交叉协作,具有基础研究和工程研究的双重特点。同时,海洋预报预测可以从全球和区域海洋发展的战略角度,为决策层进行海洋防灾减灾、海洋环境资源管理,以及应对全球变化影响等方面提供科学支撑。当前海洋与地球系统变化的预报预测正向多圈层耦合以及高分辨率的方向发展,结合人工智能、大数据、超高性能计算机,以及海洋与地球系统综合观测数据日益增加,如何提高海洋与地球系统变化的精细化与精准化预报预测是国际上面临的急迫任务和巨大挑战。 海岸带可持续发展 海岸带是地球系统中水圈、岩石圈、生物圈和大气圈的交汇地带,是陆地、海洋和大气之间物质和能量交换和多尺度过程相互作用最活跃的地带。海岸带区域人类活动的高度集中,社会与经济高度发展,高强度的工业、生活与养殖业污染排放,导致海岸带生态环境不断恶化,对海岸带可持续发展产生巨大的环境压力。同时,气候变化使得生态环境恶化进一步加剧,富营养化、缺氧、海洋酸化等成为海岸带区域突出的生态环境问题,造成渔业资源退化、海洋经济发展受到阻碍等严重后果。海岸带可持续发展是世界级难题。近年来,国际上对近海生态系统的研究主要围绕着近海富营养化、生物多样性变化、有害藻华、缺氧、海洋酸化、渔业资源变动等问题,从驱动近海生态系统变动的关键要素、近海生态系统的演变过程、机制和效应,以及对近海生态系统变化趋势的预测、评估和管理等方面展开研究,强调在生态系统水平上研究多重压力驱动下海洋食物网结构和功能的改变及其对生物多样性的影响、资源持续利用的减弱与生态灾害的发生,海洋生态系统演变对人类经济社会发展和人类健康的影响,以及对生态系统未来变化趋势的预测和相应的管理对策研究。 深海与地球生命起源 地球已有45.5亿年的历史,地球在宇宙中形成以后,最初是没有生命的。生命起源的第一个重要过程是化学演化。大气中的有机元素氢、碳、氮、氧、硫、磷等在自然界各种能源(如闪电、紫外线、宇宙线、火山喷发等等)的作用下,合成有机分子(如甲烷、二氧化碳、一氧化碳、水、硫化氢、氨、磷酸等);在此基础上,这些有机分子进一步合成,演化成了组成生物体的单体化合物(如氨基酸、单糖、腺甙和核甙酸等);这些生物单体进一步聚合,演化成高分子量生物聚合物,如蛋白质、多糖、核酸等;核酸、蛋白质等生物高分子聚合物出现后,最简单的生命也随着诞生了,从此,地球上就开始有生命了。根据地质历史记录,地球上最早的生命形式可能出现于38亿年前。无论是实验室还是自然环境中,高温高压的化学催化是从无机物合成有机物的基本条件,而海洋深部是具有化学催化能力的理想场所。因此,深海可能是地球生命的起源地之一。但是截至目前,我们还没有找到深海生命起源的直接证据。是否能够通过获得更原始的生命形式即更古老的微生物,来揭示生命的起源与演化的过程和机制仍是当前的科学难题。近些年来,深海热液区极端环境下不依赖于光能的生命现象和运转良好的黑暗生态系统的发现,提出了一系列新的生命科学的前沿科学问题,如深部生物圈生命的起源、生命耐受的极限、生命-环境互作过程以及生物如何与地球系统共进化。 海底多圈层相互作用与板块俯冲 地球是唯一有海洋、有板块运动的类地行星,但是海底多圈层相互作用与板块构造之间的内在联系一直不清楚。传统的物理海洋学研究将海水与固体(流固)界面视为一个刚性的绝热界面。然而,实际中高度复杂的流固界面并不满足上述假定。一方面,深层海水不断沿裂隙下渗到岩石圈中并导致其发生蚀变、变质,蚀变岩石圈含水量可达6%—13%,地球内部有约3—10个海洋的水,被认为是“海底下的海洋”,是重要的海水储库;另一方面,火山、热液和冷泉将板块内部的物质能量输送给海洋,地热也将地球深部的能量传递到深层海水。上述过程对深层海洋存在明显的物质和能量强迫作用。来自地球深部的物质能量经海洋环流和湍流输运到各个海域,并最终通过海底裂隙重新回到板块内部,形成一个跨海盆、跨尺度、跨圈层的物质能量循环系统。此外,洋壳的年龄与海水深度呈正相关,全球洋壳平均年龄对海平面的影响巨大。相关科学问题有:海水与岩石圈相互作用的机制及其对大洋环流有什么影响?进入地球内部的水如何影响板块俯冲的起始和板块运动?大规模板块俯冲在海洋物质能量循环中扮演什么样的角色?其中,海底跨界面的物质能量交换与板块俯冲启动机制是有待回答的重大科学问题。 深海战略性矿产资源 深海海洋中蕴藏着丰富的多金属结核、富钴结壳、多金属硫化物、稀土等矿产资源,主要集中在太平洋、印度洋和大西洋的海底,资源量巨大,含有稀有的重要战略性资源和贵金属,这些矿产尚处于资源勘探和开发技术前期准备阶段。当今世界各国正在加紧争夺深海矿产资源勘探开发的主导权和优先权,推动深海矿产资源勘探开发的理论、技术、工程创新,破解多圈层相互作用、深部过程与成矿等重大基础科学问题,攻克勘查开采技术装备体系,是保障国家能源资源安全重大战略的急迫需求。目前,深海多金属结核、富钴结壳、多金属硫化物、稀土等矿产勘探程度低、成矿规律认识不清,深海矿产的采矿、集矿、扬矿、选矿以及水下作业系统等技术装备需要尽快突破,深海矿产勘探开发的环境影响评价和开采安全保障还需要持续攻关。深海战略性矿产资源的成矿机理认识、资源精细勘查、资源量精确评估、绿色高效开发技术等问题是未来重要的科技方向。 变化中的极地海洋 进入本世纪以来,随着全球变暖和人类活动急剧增加,导致极地海区气候环境发生快速变化:极地海洋的增暖超出全球的平均水平,是全球变化的放大器;北极海冰的厚度与范围快速降低,南极冰架持续的崩解,是对气候变化最敏感的指示器。极地海洋的快速变暖和酸化,使得极地海区生态系统正受到严重威胁,并对全球环境和气候产生影响。一方面极地海洋的快速变化将导致全球水循环格局的改变,引发水资源分布变化、海平面上升等一系列重大问题;另一方面极地海洋环境与气候的变化改变了全球能量和质量分布格局,导致全球天气、气候不稳定性增加,引发区域和全球天气、气候灾害风险加剧。因此极地海洋快速变化已经引起国际政治家、经济圈、科学界和社会公众的高度关注,并成为国际政治和科学的核心议题之一。 但是相比其他大洋,极地海区是目前我们了解最少的海区,且由于其特殊的环境,主要存在科学问题包括极地冰盖不稳定性和海平面变化;北冰洋海冰快速融合及其气候效应; 南大洋环流变化及其全球效应;极地生态系统的敏感性与脆弱性;两极冰盖变化对亚太及全球多尺度气候变化的调控; 气候变化影响下的极地新兴生态环境问题。要想解决上述科学问题,需要加强极地海洋的观探测技术,结合新能源、新材料、无人智能冰下航行器、卫星遥感等技术进步,保障对极区的考察和其他海上活动,支撑未来极区海洋开发利用。 大型深海工程安全保障 大型深海工程结构是海洋资源与能源开发利用的重要工程装备,通常包括水面大型浮体、超长细比柔性立管及系泊系统等。实际工程中,台风、大浪、海流等海洋动力环境恶劣,平台系统结构复杂、庞大,海床土体非线性、流固耦合及几何大变形等问题突出,构成动力环境-结构-海床土体之间多尺度多过程耦合作用的复杂系统。然而,目前对深海平台系统的耦合作用机理仍然缺乏足够的科学认识,工程设计水平不足,安全运行保障技术滞后。建立极端动力环境下超长重现期动力环境设计标准,发展科学高效的平台系统整体耦合动力分析方法,揭示整体结构损伤演化规律和耦合失效模式,是海洋资源开发与海洋工程发展的核心问题。