Green Chemistry and Polymer Chemistry are delighted to announce a call for papers to the Make polymers sustainable, why and how? cross journal Themed Collection, Guest Edited by Maiyong Zhu (Jiangsu University), Gerard Lligadas (Universitat Rovira i Virgili), Fiona L. Hatton (Loughborough University), Garret Miyake (Colorado State University), and Antoine Buchard (University of York).
About this Themed Collection
It is estimated that more than 300 million tons of synthetic polymeric materials are being produced every year and most are made from petroleum-based feedstocks. As the global consumption of polymers increases each year, this puts an unsustainable demand on our finite and non-renewable fossil fuel resources. In addition, the ever-growing quantity of polymers becoming waste at the end of their life presents serious environmental problems due to their persistence and potential ecotoxicity. This themed collection will showcase cutting-edge research and advancements in developing more sustainable methods to tackle these global challenges.
Great achievements have been made so far, including alternative renewable monomers derived from biomass, synthetic biodegradable polymers, and synthetic processes, such as those using molten salts, deep eutectic solvents, ionic liquids, and high-performance catalysts have shown great energy efficiency during the production of polymers. Additionally, the emergence and wide interest for circular economy principles have promoted research into the recycling (including chemical) of polymers, adding value to post-consumed polymers. Furthermore, artificial intelligence and machine learning have been offering new powerful tools for scientists and engineers to guide the design and synthesis of novel polymers, as well as to predict their properties, in order to efficiently meet the requirements for a sustainable development.
Preferred topics include but are not limited to:Green synthetic approaches to polymersPolymers derived from renewable monomers/feedstockPolymers from agricultural wasteBio-based vitrimers, thermosets and resinsLife cycle analysis of polymersPolymers recycling to monomer or materials with equivalent functionUpcycling end-of-life polymersMachine learning for sustainable polymersEcotoxicity and toxicity of bio-derived polymers