《美国国家标准与技术研究院(NIST)为单光子探测器构建出基于超导的KICS系统用于捕捉TES信号》

  • 编译者: 张宇
  • 发布时间:2025-01-03
  • 能够检测可见光中单个光子的传感器对于从暗淡的遥远星系成像到量子计算和DNA测序等应用都变得至关重要。近日,美国国家标准与技术研究院(National Institute of Standards and Technology, NIST)的研究人员现在已经设计出一种更简单且可能更精确的系统,用于读取大量最灵敏的单光子探测器的测量结果。

    这些被称为过渡边缘传感器(Transition Edge Sensors, TES)的高灵敏度探测器由NIST开发和完善,它们由一层超薄的金属膜组成,其温度保持在超导(零电阻状态)和正常电阻之间的临界状态下。当辐射击中单个TES探测器时,它会使其提高温度并增加TES的电阻,这表现为电流的变化。单个光子携带的能量越多,产生的信号就越大。

    感应电流的变化其实非常小,必须通过特殊的识别系统进行放大。通常,研究人员使用超导量子干涉装置(Superconducting Quantum Interference Device, SQUID),它将TES中的微小电流变化转换为被放大的磁信号。

    尽管大量SQUIDs已被用于识别无线电波和X射线波长产生的数百到数千个像素的光子在TES中所产生的感应电流,但它们的运行速度太慢,无法从多个检测可见光光子的TES设备中收集数据。此外,SQUIDs相对笨重,很难部署在需要数千个紧密排列的TES设备的新应用系统中使用。

    为了克服这些缺点,NIST和科罗拉多大学博尔德分校的Paul Szypryt和他的同事用另一种称为动态感应电流传感器(Kinetic Inductance Current Sensor, KICS)的识别系统取代了SQUIDs。每个KICS都由一个超导体构成,该超导体在特定频率下自然共振。当来自TES的电流脉冲通过电路时,KICS会改变其共振频率。重要的是,这些频率变化足够快,以至于每个KICS阵列都可以同时读取来自数千个可见光TES传感器的信号。

    KICS的另一个优势是:它大大减少了电子噪声的一个主要来源。为了最大限度地提高KICS电路的灵敏度,必须向该设备施加直流电,或称为偏置电流。但如果持续提供该电流,它可能会产生一个虚假的电子信号。而KICS是超导体构成的,它可以在这种无电阻电路中捕获并永久保留偏置电流。因此,信号捕获的过程中只需对KICS施加一次直流电,从而有效减少了虚假信号,使KICS系统能够非常准确地读取TES电流。

    Paul Szypryt和他的同事,以及来自意大利米兰比可卡大学的科学家们,于11月6日在《Communications Engineering》期刊上发布了他们的研究成果。(DOI:10.1038/s44172-024-00308-y)

相关报告
  • 《美国国家标准与技术研究院(NIST)重建世界级紫外线校准系统》

    • 编译者:李晓萌
    • 发布时间:2024-08-20
    • 紫外线(UV)光可能看起来像一个无形的英雄,默默地在我们的医院中消毒,固化我们的指甲油,并杀死我们水中的病原体。但是,我们如何确保它以安全有效的方式使用呢?为了帮助确保每一束紫外线都准确无误地达到目的,近日,美国国家标准与技术研究院(NIST)重建了其专门的校准实验室,称为紫外光谱比较器设施(UVSCF),行业客户将其紫外线检测设备送至该设施进行精确测量和校准。 紫外线具有广泛的应用。紫外线的杀菌特性使其成为消毒和杀菌的有价值的工具,特别是在医疗保健环境中。它也是对抗水中微生物污染的有效方法,用于饮用水、废水和地表水消毒。房主使用紫外线固化环氧树脂来安装新的厨房台面。在美甲沙龙行业,UV灯箱固化凝胶指甲产品。而且,近年来,新的消费品激增,如紫外线防护服,可以防止不必要的紫外线暴露。需要仔细校准紫外线光源,以确保这些产品按预期工作。 了解紫外光谱 紫外线是不可见的,波长比我们用眼睛看到的光短。根据波长,有三种不同类型的紫外线:UVA、UVB和UVC。波长是指光波峰值与可见光不同颜色之间的距离。虽然NIST的新校准系统满足了这三种需求,但其独特之处在于精确测量200-300纳米范围内的UVC光。 与UVA和UVB相比,UVC光具有更短、更高的能量波长。这使得UVC在杀死细菌和病毒方面非常有效。 NIST研究化学家Cameron Miller表示:“在美国,每年约有10万人死于与医疗保健相关的感染。他们去医院接受治疗,但最终因消毒不足而感染。”。“使用紫外线消毒房间和设备提供了一种潜在的解决方案。” 然而,UVC光也会伤害人体皮肤和眼睛,因此需要谨慎使用。 使用紫外线的组织,从军事和研究机构到大学和工业制造商,都可以使用一种称为紫外线探测器的紧凑型手持设备来检查紫外线光源是否发出适量和强度的光。与任何其他测量仪器一样,这些探测器需要校准,因此用户定期将其打包并发送到NIST的紫外光谱比较器设施。 正如人们可以通过将已知重量的物体放在天平上来校准天平一样,NIST专家通过将探测器暴露在特定的紫外线波长下并将其读数与精确校准的标准探测器进行比较来校准探测器。然后,他们为每个探测器分配校准值。 NIST物理学家Jeanne Houston表示:“我们能够以极高的精度和精确度测量非常短波长的紫外光。”。“紫外光谱的UVC范围是最具挑战性的测量部分,因此达到这种精度是我们在这个领域通常看不到的。” 然后,NIST将探测器退还给客户,客户可以放心使用它来确保其紫外线系统和产品的安全性和有效性。 满足新兴技术的需求 自20世纪80年代末以来,NIST一直维护着一个紫外线校准设施。然而,到2010年代中期,该设施已无法满足紫外线消毒等新兴技术的需求,因为它没有针对消毒所需的关键波长范围进行优化。新冠肺炎大流行使人们对改善和重建该系统产生了新的兴趣。 Houston表示:“新冠肺炎爆发后,紫外线消毒效果显著,我们能够完全重建系统。”。“我们已经实施了大规模的改进,我认为我们的新设施是世界上最好的。”
  • 《美国国家标准与技术研究院(NIST)研究人员开发了一种新型频率梳,有望进一步提高计时的准确性》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-04-18
    • 被称为频率梳的芯片设备,以无与伦比的精度测量光波的频率,已经彻底改变了计时,探测太阳系外的行星和高速光通信。 近日,美国国家标准与技术研究院(NIST)的科学家和他们的合作者已经开发出了一种制造这种梳子的新方法,有望提高它们已经非常精确的精度,并允许它们测量以前无法达到的频率范围内的光。扩大的范围将使频率梳探测细胞和其他生物材料。 这种新设备是在一个小玻璃芯片上制造的,与以前基于芯片的频率梳(也被称为微型梳)的工作方式完全不同。 频率梳就像光的尺子。就像普通尺子上均匀间隔的刻度可以测量物体的长度一样,微梳上均匀间隔的频率尖峰可以测量光波的振荡或频率。 研究人员通常使用三个元素来构建微梳:单个激光器,称为泵浦激光器;一个微小的环形谐振器,最重要的元素;以及在两者之间传输光的微型波导。注入波导的激光进入谐振器并绕环运动。通过仔细调整激光的频率,环内的光可以变成一个孤波——一个在移动时保持其形状的孤波脉冲。 每当孤子绕环转一圈,就会有一部分脉冲分离出来,进入波导。很快,一串类似尖峰的窄脉冲就会填满波导,每个尖峰在时间上间隔相同的固定时间——也就是孤子完成一圈所需的时间。这些尖峰对应于一组均匀间隔的频率,并形成频率梳的刻度或“齿”。 这种产生微梳的方法虽然有效,但只能产生以泵浦激光频率为中心的频率范围内的梳。为了克服这一限制,NIST的研究人员gracimory Moille和Kartik Srinivasan与新西兰奥克兰大学的Miro Erkintalo和Dodd-Walls光子与量子技术中心领导的一个国际研究小组合作,从理论上预测了一种产生孤子微梳子的新过程,然后通过实验证明了这一过程。新方法不是使用单一的激光器,而是使用两个泵浦激光器,每一个都以不同的频率发射光。这两种频率之间复杂的相互作用产生了一个中心频率恰好位于两种激光颜色之间的孤子。 这种方法使科学家能够在不再受泵浦激光器限制的频率范围内制造出具有新特性的梳子。通过产生与注入泵浦激光不同频率的梳状结构,该装置可以让科学家研究生物化合物的组成。 除了这种实际优势之外,这种新型微梳(被称为参数驱动微梳)背后的物理原理可能会导致其他重要的进步。一个例子是与微梳单个齿相关的噪声的潜在改善。 在单激光产生的齿梳中,泵浦激光直接只雕刻中心齿。因此,离梳子中心越远,牙齿就越宽。这是不可取的,因为较宽的牙齿不能像较窄的牙齿那样精确地测量频率。 在新的梳状系统中,两个泵浦激光器塑造每个齿。根据理论,这将产生一组同样窄的牙齿,从而提高测量的准确性。研究人员现在正在测试这一理论预测是否适用于他们制造的微型梳子。 双激光系统提供了另一个潜在的优势:它产生的孤子有两种类型,可以比作有正号或负号。一个特定的孤子是负的还是正的纯粹是随机的,因为它是由两个激光之间相互作用的量子特性产生的。这可能使孤子形成一个完美的随机数生成器,它在创建安全密码和解决一些统计和量子问题方面起着关键作用,否则用普通的非量子计算机是不可能解决的。 研究人员在3月14日的《Nature Photonics》网络版上描述了他们的工作(DOI:  https://doi.org/10.1038/s41566-024-01401-6)。该团队包括来自比利时布鲁塞尔自由大学的franois Leo和他的同事,法国第戎的勃艮第大学的Julien Fatome,以及来自NIST和马里兰大学合作研究的联合量子研究所的科学家。