《美国卡内基-梅隆大学液态金属-弹性体纳米复合材料用于可拉伸的介电材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-05-07
  • 软材料是可穿戴电子设备和软体机器人的关键组分。制备软材料的常见策略是将无机填料和柔软的聚合物混合来形成结合了聚合物的机械性能和无机填料的电气性能、热性能的复合材料。然而,这种策略的局限性在于需要加入大量填料提高电气性能或者热性能,这经常导致聚合物的机械性能变差,导致软材料的刚性变强、弹性变弱。 Gallone 等人用填料提高了硅酮弹性体的介电常数,但降低了机械性能。用液态金属液滴取代填料是不错的选择。含有液态金属的弹性体复合材料结合了硅酮橡胶的柔性、弹性和高介电常数、高热导率、断裂韧性。这种复合材料已经通过共晶镓铟的微米级液滴的多分散悬浮液合成而得。然而,这种材料的缺陷是由其非均一的微观结构导致的介电击穿强度的降低。用亚微米级液滴取代微米级液滴可以提高这种材料的介电常数和保持弹性体的介电击穿强度不变。液体金属液滴的尺寸除了对这种材料的介电击穿强度有影响外,还对机械性能产生影响。 成果简介 近日,美国卡内基-梅隆大学卡梅尔-马杰迪教授在期刊Advanced Materials上报道了一系列可拉伸的液态金属-弹性体纳米复合材料,研究了液态金属的尺寸对这些材料的介电性能和机械性能的影响。纳米尺度的液态金属能提高这些材料的介电常数,不显著降低它们的弹性柔度、可拉伸性和介电击穿强度。相反,微米尺度的液态金属也能提高这些材料的介电常数,却显著降低它们的介电击穿强度。

    作者团队制备了液态金属液滴直径不同的液态金属-弹性体纳米复合材料,并研究了液滴直径对这些材料的机械性能和介电性能的影响。液滴直径为10µm的这些材料的介电击穿强度随着液态金属的体积分数的增加而显著降低。相反,液滴直径分别为1 µm和100 nm的这些材料的介电击穿强度呈现更稳定的线性的降低。液滴直径较小的这些材料保留了聚合物基体的拉伸性。而且,直径较小的这些材料产生刚性。最后,这些材料普遍呈现出高弹性行为和可忽略的机械滞后。这些材料的机械性能和介电性能使这些材料对软材料驱动、能量存储、能量采集产生变革性影响。 文献链接:A Liquid‐Metal–Elastomer Nanocomposite for Stretchable Dielectric Materials (Advanced Materials ,2019,DOI: 10.1002/adma.201900663 )

相关报告
  • 《应用于电-水动力纳米技术的弹性体材料的纳米复合材料。》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-03-05
    • 复制成型通常会引起弹性体的摩擦。迄今为止,这种现象只在非纹理弹性体表面进行了研究,尽管复制模塑是其纳米化的有效方法。在此,我们证明了通过复制成型的纳米材料表面的纳米材料也在纳米尺度上与纳米结构密切相关。利用开尔文探针显微镜、电液光刻和静电分析对我们的模型纳米结构、聚(二甲基硅氧烷)纳米阵列进行了从聚碳酸酯纳米锥阵列的复制,我们发现,诱导的三聚体在纳米范围内,特别是在其边缘处,是高度局部性的。通过有限元分析,我们还发现,在脱模过程中,轮辋的摩擦力最大。从这些研究结果中,我们可以识别出,作为控制tribocharge纳米尺度分布模式的主要因素,demol。通过将所产生的环形三角波电荷与电水动力光刻相结合,我们也实现了具有10个nm尺度环形山的纳米火山的简单实现。 ——文章发布于2018年3月02日
  • 《合肥工大等研发自修复可拉伸弹性导体新材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-27
    • 合肥工业大学从怀萍研究组和中国科学技术大学俞书宏团队合作,研制出兼具自修复性、高导电性和优异抗拉伸性和电机械稳定性的弹性导体材料。相关成果近日发表于《自然—通讯》。   可拉伸电子器件在可穿戴电子器件、柔性能源和仿生器件等领域具有重要应用,如何使拉伸导体在大拉伸形变条件下保持优异的电机械稳定性是该领域目前面临的重大挑战。   研究团队首次提出将金属纳米结构三维组装导电骨架与金属—硫配位键引入到弹性聚合物凝胶网络结构中的设计理念,制备出具有高度有序蜂窝结构的三维银纳米线气凝胶,在其中进行原位聚合N—异丙基丙烯酰胺,成功研制出兼具自修复性、高导电性和电机械稳定性以及优异抗拉伸性能的新型弹性导体材料。   实验结果表明,其在100%拉伸应变下,电阻变化仅20%,在100%~800%应变下循环拉伸500圈,其不可逆电阻变化可以忽略。该材料还表现出快速高效的愈合能力,在近红外光诱导下,其在室温条件下1分钟内即可实现自愈合,愈合效率高达93%,愈合后仍保持了优异的导电性能、机械性能和电机械稳定性。