《中国科学技术大学实现高自旋原子的长寿命薛定谔猫态》

  • 来源专题:计量基标准与精密测量
  • 编译者: 李晓萌
  • 发布时间:2024-11-10
  • 中国科学技术大学与合肥国家实验室夏添、卢征天、邹长铃等人合作,利用激光冷原子方法制备成基于自旋的薛定谔猫态,其寿命达到分钟量级,有助于提升对自旋进动相位的测量灵敏度。相关成果以“Minutes-scale Schr?dinger-cat state of spin-5/2 atoms”为题于11月1日发表在《自然-光子学》期刊上(Nature Photonics)。

    在量子精密测量中,自旋进动不仅是测量磁场、惯性等许多物理现象的有效探针,还可以用于探索超越标准模型的新物理。在做自旋进动测量时,高自旋薛定谔猫态具有明显优势,一方面因为高自旋量子数放大了进动频率信号;另一方面因为猫态对一些环境干扰因素不敏感,从而压制了测量噪声。然而,实验中应用猫态面临两大技术挑战:一是如何在高维量子空间中实现幺正变换的高效操控;二是需要保持足够长的量子相干时间。

    在本工作中,研究团队成功实现了一种具有超长相干时间的薛定谔猫态。研究人员利用光晶格囚禁自旋为5/2的镱-173原子,通过控制激光脉冲对原子诱导非线性光频移,制备出由自旋投影为+5/2与-5/2两个态组成的叠加态。由于这两个态的磁量子数相距最远,所以它们的叠加态被称为薛定谔猫态。这种猫态具有增强的磁场灵敏性,同时在光晶格中感受到完全相同的光频移,处于“无消相干子空间”中,从而对光晶格的强度噪声和光斑形貌变化具有天然的免疫性。实验结果表明,该猫态的相干时间突破了20分钟。通过Ramsey干涉测量法,研究人员证实了接近海森堡极限的相位测量灵敏度。这一长寿命薛定谔猫态为原子磁力计、量子信息纠错以及探索新物理等开辟了新途径。

    合肥微尺度物质科学研究中心杨洋博士为论文第一作者,夏添研究员和卢征天教授为共同通讯作者。该研究工作得到了国家自然科学基金委和科技部的资助。

    文章链接:https://www.nature.com/articles/s41566-024-01555-3

    (合肥微尺度物质科学国家研究中心、科研部)

  • 原文来源:https://news.ustc.edu.cn/info/1055/89512.htm
相关报告
  • 《中国科学技术大学成功突破紫外LED性能》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2019-12-02
    • 紫外线虽然在太阳光中能量占比仅5%,但却广泛应用于人类生活。目前紫外光应用包括印刷固化、钱币防伪、皮肤病治疗、植物生长光照、破坏微生物如细菌、病毒等分子结构,因此广泛应用于空气杀菌、水体净化和固体表面除菌消毒等领域。 传统的紫外光源一般是采用汞蒸气放电的激发态来产生紫外线,有着功耗高、发热量大、寿命短、反应慢、有安全隐患等诸多缺陷。新型的深紫外光源则采用发光二极管(lightemittingdiode:LED)发光原理,相对于传统的汞灯拥有诸多的优点。其中最为重要优势的在于其不含有毒汞元素。随着《水俣公约》的实施,标志着2020年间将全面禁止含有汞元素紫外灯的使用,因此如何才能开发出一种全新的环保、高效紫外光源,成为了摆在人们面前的一项重要挑战。 而基于宽禁带半导体材料(GaN,AlGaN)的深紫外发光二极管(deepultravioletLED:DUVLED)成为了这一新应用的不二选择。这一全固态光源体系体积小、效率高,寿命长,仅仅是拇指盖大小的芯片,就可以发出比汞灯还要强的紫外光。这其中的奥秘主要取决于III族氮化物这一种直接带隙半导体材料:导带上的电子与价带上的空穴复合,从而产生光子。而光子的能量则取决于材料的禁带宽度,科学家们则可以通过调节AlGaN这种三元化合物中的元素组分,精密地实现不同波长的发光。然而,要想实现紫外LED的高效发光并不总是那么容易。研究者们发现,当电子和空穴复合时,并不总是一定产生光子,这一效率被称之为内量子效率(internalquantumefficiency:IQE)。 中国科学技术大学微电子学院孙海定和龙世兵课题组和中国科学院宁波材料所郭炜和叶继春课题组发现,为了提升紫外LED的IQE数值,可以通过AlGaN材料生长的衬底--蓝宝石,也就是Al2O3的斜切角调控来实现,研究人员发现,当提高衬底的斜切角时,紫外LED内部的位错得到明显抑制,器件发光强度明显提高。当斜切角衬底达到4度时,器件荧光光谱的强度提升了一个数量级,而内量子效率也达到了破纪录的90%以上。 与传统紫外LED结构不同的是,这一种新型结构内部的发光层--即多层量子阱(MQW)内势阱和势垒的厚度并不是均匀的。借助于高分辨透射电子显微镜,研究人员得以在微观尺度分析仅仅只有几纳米的量子阱结构。研究表明,在衬底的台阶处,镓(Ga)原子会出现聚集现象,这导致了局部的能带变窄,并且随着薄膜的生长,富Ga和富Al的区域会一直延伸至DUVLED的表面,并且在三维空间内出现扭曲、弯折,形成三维的多量子阱结构。 研究者们称这一特殊的现象为:Al,Ga元素的相分离和载流子局域化现象。值得指出的是,在铟镓氮(InGaN)基的蓝光LED体系中,In由于和Ga并不100%互溶,导致材料内部出现富In和富Ga的区域,从而产生局域态,促进的载流子的辐射复合。但在AlGaN材料体系中,Al和Ga的相分离却很少见到。而此工作的重要意义之一就在于人为调节材料的生长模式,促进相分离,并因此大大改善了器件的发光特性。 通过在4度斜切角衬底上优化外延生长调节,研究人员摸索到了一种最佳的DUVLED结构。该结构的载流子寿命超过了1.60ns,而传统器件中这一数值一般都低于1ns。进一步测试芯片的发光功率,科研人员发现其紫外发光功率比传统基于0.2度斜切角衬底的器件强2倍之多。这更加确信无疑地证明了,AlGaN材料可以实现有效的相分离和载流子局域化现象。除此之外,实验人员还通过理论计算模拟了AlGaN多量子阱内部的相分离现象以及势阱、势垒厚度不均一性对发光强度和波长的影响,理论计算与实验实现了十分吻合。 该研究成果同时得到了华中科技大学戴江南和陈长清教授,河北工业大学张紫辉教授,沙特阿卜杜拉国王科技大学BoonOoi和ImanRoqan教授等联合攻关完成。研究者相信,此项研究将会为高效率的全固态紫外光源的研发提供新的思路。这种思路无需昂贵的图形化衬底,也不需要复杂的外延生长工艺。而仅仅依靠衬底的斜切角的调控和外延生长参数的匹配和优化,就有望将紫外LED的发光特性提高到与蓝光LED相媲美的高度,为高功率深紫外LED的大规模应用奠定实验和理论基础。相关结果以“UnambiguouslyEnhancedUltravioletLuminescenceofAlGaNWavyQuantumWellStructuresGrownonLargeMisorientedSapphireSubstrate”为题,在线发表在AdvancedFunctionalMaterials上(DOI:10.1002/adfm.201905445)。
  • 《超长寿命高效制氢技术研发成功》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-03-04
    • 氢能是未来能源体系的重要组成部分,如何实现高效稳定、低成本制氢是能源科技的关键课题。记者17日从中国科学院大学获悉,来自该校和北京大学的联合科研团队成功研发出一种超长寿命、高效制氢新技术。该技术通过在铂基催化剂表面覆盖特殊保护层,使催化剂在制氢反应中能够连续工作超1000小时。这一突破让低成本大规模制氢成为可能。相关研究成果在线发表于《自然》杂志。 在这项研究中,科研人员为破解催化剂稳定性瓶颈,开发了一种新技术:通过在铂基催化剂表面构建稀土氧化物纳米覆盖层,形成纳米级“保护盾”。这种结构可选择性覆盖载体表面的冗余位点,实现对关键催化剂界面的精准保护。实验数据显示,在甲醇—水重整制氢反应中,该新型催化剂成功稳定工作超过1000小时。更令人惊叹的是,该催化剂的活性超高,实现了超过1500万的催化转化数。 这项研究突破了催化科学中的稳定性瓶颈,首次在不降低催化剂活性的前提下,实现了高稳定性的界面催化剂设计,为贵金属催化剂的低成本、高稳定性应用提供了可行方案,预计未来将在绿色能源、氢燃料电池等领域发挥重要作用。