《这种制氢新技术转换效率只有1%,商业化之路很漫长!》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-11-04
  • 近日,新加坡国立大学(NUS)的一组研究人员提交了一项科学发现,这可能会彻底改变分解水制氢的方式。而这项发现来自于一次意外。

    目前制氢除了工业副产氢等来源,通过各种可再生能源制氢都需要用到能源,而这些能源本身都是人工费心费力制造出来的。这种制氢方式一直遭受对氢能源持抨击态度的人的指责。既然地球的氢含量很大,那么有没有一种方法让氢自动从氢化合物,尤其是水中跑出来,自动逸出,并被完美收集?

    这种探索从上世纪就开始了。即使不使用人工制造的可再生能源,要让氢从水中逸出,还是得有能量,无疑利用太阳光是最容易想到的路线。但即使有太阳光,它可无法像蒸发水分一样打断氢原子和氧原子之间的链接,这中间还需要催化剂。人们在太阳光利用和催化剂研究方向上想了很多辙。

    今年以来,这一技术产生了很大的进展。

    中国:获得科研重大进展

    虽然在过去半个世纪的光催化研究中,人们已经在光催化剂制备和光催化反应研究方面做出了巨大的努力,但由于光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,人们对该过程的基本机制一直不清楚。

    日前,这个谜团被中国科学院大连化学物理研究所李灿院士、范峰滔研究员等揭开了。研究人员对光催化剂纳米颗粒的光生电荷转移进行全时空探测,“拍摄”到光生电荷转移演化全时空影像。相关研究成果已于10月12日发表在国际学术期刊《自然》上。

    目前,光催化分解水研究大多集中在筛选光催化材料和优化器件工艺上,光生电荷动力学等研究相对薄弱,重大科学问题尚未解决。李灿说,光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开全过程的微观机制极具挑战性。

    范峰滔基于血管成像介入手术的启发,却定了光催化成像的研究方向。通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,首次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。“这为理性设计性能更优的光催化剂提供了新的思路和研究方法。”

    日本:光触媒技术正在成熟中

    去年11月,日本的研究团队成功利用阳光照射从水中分解出氧与氢的“光触媒”作用,在氢能方面有了革命性的突破。在100平方米的大范围试验中,成功分离出高纯度氢。这一实验的成功有助于大量且低成本的制造氢的技术,标志着日本实现了全球首例太光大规模制氢。

    目前日本茨城县中部农村的大片山丘,已经树立了很多光触媒板,达到100平方米,仔细观察其内部,会看到像碳酸饮料那样不断冒出小小的气泡。该实验由东京大学特聘教授堂免一成、三菱化工、INPEX等的研究团队实施,描绘出在沙漠中建设“氢工厂”的远景。

    这项技术的关键是提高能源转换效率,即把太阳能转换成氢能源的效率。要投入商用,估计要达到10%的能源转换效率。不过但茨城县的研究显示,即使在夏天,平均的转换效率也还不到1%。但是在100平米的范围内试验还是第一次。

    丰田汽车集团丰田中央研究所今年4月宣布,研发出转换效率为7.2%的人工光合成装置。虽然是室内的试验,但光触媒板被扩大到了36厘米见方。

    新加坡:无意中的大发现

    新加坡国立大学设计与工程学院材料科学与工程系的研究小组发现,光可以在一种广泛用于水电解的催化材料中触发一种新的机制,在这种材料中,水被分解成氢和氧。其结果是一种更节能的获取氢的方法。

    研究人员说:“我们发现电催化反应的氧化还原中心由光触发,在金属和氧之间切换,这大大提高了水电解效率。”

    这项新发现可能会开辟新的、更有效的工业方法来生产氢气,并将这种环保的燃料来源提供给更多的人和行业。该研究小组发表在《自然》杂志上的一篇研究论文中详细阐述了他们的发现。

    在正常情况下,研究团队可能不会遇到这样一个突破性的发现。但近三年前,他实验室的照明意外断电,让他们得以观察到与光有关的催化电解水机制。

    通常,他们的研究实验室的顶灯通常会24小时开着。但在2019年的一个晚上,由于停电,灯熄灭了。当研究人员第二天回到实验现场时,他们发现在黑暗中继续进行的水电解实验中,一种基于氢氧化镍的材料的性能急剧下降。

    研究人员说:“性能下降,以前没有人注意到,因为从来没有人在黑暗中做过实验。”。“此外,文献表明,这种材料不应对光敏感;光不应对其性能产生任何影响。”

    为了确定他们即将发现突破性的东西,研究小组进行了多次重复实验。他们深入研究了这种现象背后的机制。他们甚至在新加坡以外的地方重复了这个实验,以确保他们的发现是一致的。

    三年后,该研究小组终于能够在一篇论文中公开分享他们的发现。

    根据他们的发现,该团队目前正在设计一种新的方法来改进生产氢气的工业流程。研究人员建议让含有水的电池制成透明的,这样就可以在水分解过程中引入光线。这会使得电解过程可以在更短的时间内产生更多的氢气,消耗更少的能量。

    按照经济上的评估,利用太阳光制氢效率达到5%就可以进行工业化中试,效率如果达到10%,就和最便宜的化石资源制氢成本相近。未来,这个成果有望促进太阳能光催化分解水制取太阳燃料的应用,为人类生产和生活提供清洁、绿色的能源。

  • 原文来源:https://www.in-en.com/article/html/energy-2320404.shtml
相关报告
  • 《氢能,距离商业化还有多远?》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2024-02-08
    • 打通氢能应用链,以碳中和为目标,以整体性的视角规划中国新的能源体系,在适宜布局氢能的区域、产业进行相应的投资。 氢能产业是未来产业的重点发展方向。2023年以来,在政策与市场的双重驱动下,氢能的应用领域正在不断拓展和创新,中国石化等公司主导的大型绿氢项目落地,绿氢正逐渐替代传统的灰氢,为钢铁、化工等行业的脱碳转型提供有力支持;燃料电池汽车进入放量提速期,宇通客车等公司迎来相关业务增长。当前我国氢能源迎来发展热潮,尽管相关产业发展晚于欧美日韩,但发展速度迅猛,在产业链布局方面已逐渐赶上西方国家。作为“电能替代”,氢能源应用范围可以覆盖交通出行、工业生产、能量转送、电网储能调配等领域,使氢能源行业有望成为能源转型支柱行业。 利好政策不断加持 产业发展离不开政策赋能,2024年伊始,国家发展改革委、商务部、市场监管总局就联合发布《关于支持广州南沙放宽市场准入与加强监管体制改革的意见》,提出创建广州南沙粤港融合绿色低碳示范区,推进氢能等清洁能源利用。此前,国家发展改革委、国家能源局印发的《氢能产业发展中长期规划(2021—2035年)》指出,氢能产业是战略性新兴产业和未来产业重点发展方向。以科技自立自强为引领,我国将加强氢能产业创新体系建设,加快突破氢能核心技术和关键材料瓶颈,加速产业升级壮大,实现产业链良性循环和创新发展。践行创新驱动,促进氢能技术装备取得突破,加快培育新产品、新业态、新模式,构建绿色低碳产业体系,打造产业转型升级的新增长点,为经济高质量发展注入新动能。《“十四五”新型储能发展实施方案》首次将“氨”作为重要储氢载体列入重点攻关方向,明确提出开展“氨氢储能”示范。 氢能产业政策由国家层面“自下往上”,地方政府也纷纷发力。根据安徽省发展改革委印发的《安徽省氢能产业高质量发展三年行动计划》,到2025年,安徽省将初步实现氢能商业化推广应用,建成国内重要的氢能产业发展高地。《成都市优化能源结构促进城市绿色低碳发展政策措施实施细则(试行)》提出对绿电制氢项目市区两级联动给予电费支持,并对加氢站建设运营给予最高1500万元补助。 作为全国重要的专用车生产基地,随州市委市政府按照“下好先手棋、抢占制高点、建设创新园、培育大产业”总体思路,明确发展氢能产业要依托新能智能专汽和零部件产业集群,以新能源商用车整车龙头引领,提升氢能商用车产业能级,以申报国家燃料电池汽车推广应用示范城市群为契机,加快推进氢能商用车产业化。 随州市委统战部副部长、市工商联党组书记杨明表示,随州致力于育强链主企业、建好氢能产业园、加快加氢站建设、构建场景闭环,并规划布局了占地160亩的氢能源产业园,为氢能源产业发展提供研发生产基地。同时,随州深挖新能源制氢资源禀赋,布局绿氢制取产业链。“在上游制氢环节,目前我国氢气主要来自灰氢,未来利用风光发电等可再生能源电解水制氢(绿氢)将成为发展趋势。随州是湖北风光电资源大市,截至2023年10月,随州新能源并网装机容量322.81万千瓦,占湖北新能源装机容量的10.42%。未来将充分利用风光电资源优势,推动国家能源集团实施制氢项目,打造华中地区绿氢产业高地。” 此外,随州借力氢气储运装备生产耦合条件,布局氢能装备产业链。随州多家企业拥有压力容器生产能力,全市危化品罐式车生产企业20余家,年产危化品罐式车1万余辆,占全国60%以上,相关零部件本地配套率高,具备批量生产储氢罐的储备能力,储氢瓶研发正在突破中。随州将高起点规划建设氢能产业园,以光伏绿氢制取、氢气储运、氢燃料电池、氢能商用车等项目为重点,“串珠成链”贯通氢能装备完整闭环,构建氢能“制、储、运、加、用”全产业链。 氢车上阵 在氢能落地和商业化模式中,氢能汽车已成为较为成熟的模式之一。在2022北京冬奥会上,示范叠加燃料电池汽车示范城市群项目更是让氢能成为燃料电池行业焦点。其中,作为北京大兴区重点引进的氢能高科技企业,英博新能源直接与车辆运营平台合作,在北京投放了一批30辆燃料电池客车,用以承接部分北京日常防疫任务和奥运会、残奥会的通勤保障工作。 作为“国家队”,国家电投集团为冬奥会服务投入了200辆氢腾大巴。氢能车的核心是氢能燃料电池发动机,负责这批氢腾大巴研发工作的大国工匠、氢燃料电池自主化技术先行者、国家电投集团氢能科技发展有限公司首席技术官柴荣茂为了加快研制速度,在研制电池质子交换膜和碳纸的同时,第一时间组建发动机研制团队,跨界机械领域,开始双线推进。柴荣茂告诉《小康》杂志、中国小康网记者:“冬奥会创造了有史以来几个第一:第一次逾千辆燃料电池汽车集中运行,第一次在大型国际赛会上大规模使用氢能燃料电池汽车作为主运力,第一次国产自主化技术和国际一流品牌在同一赛道竞争,第一次新能源汽车在严寒冬天野外场地进行长达数月(包括热身赛)的服务。” 湖北新楚风汽车股份有限公司则凭借氢能转型,从濒临破产的绝境走上行业转型前沿,并于去年11月发布了全球首款正向研发的千公里续航气态氢能重卡。针对燃料电池商用车整车发展需要,新楚风新增加氢站、氢燃料发动机测试台架、焊装机器人等设施设备,具备了氢燃料电池商用车研发、生产、验证能力。 根据中汽协统计,2022年全年新能源汽车销量为688.7万辆,全年氢燃料电池汽车销量为3367辆,约占0.049%。2023年1—11月新能源汽车销量为830.4万辆,氢燃料电池汽车销量为3996辆,约占0.048%。造成这种现状的重要原因之一便是氢燃料电池的技术成熟度还不如锂电池,加之规模化程度不同,致使氢燃料电池成本当前高于锂电池成本。 相比于锂电池、镍氢电池等其他新能源电池,氢燃料电池具有氢储能能量密度高、零污染零排放、补给速度快、续航能力长、整车重量轻的优点。氢储量丰富,可从海水中开发。氢气热值大约是石油的3倍,产物却只有水,水可以再次分解氢。“氢燃料电池在使用寿命结束后,并不会对环境造成污染。而锂离子电池则含有很多重金属,如果回收不当,就会对环境造成污染。直接加氢耗时在5分钟左右,续航一般超过500公里,锂电池充电时间长,续航较短。在低温环境下,锂电池续航里程大打折扣,氢燃料电池则不受影响。”广州海珀特科技有限公司CMO段清泉说。相比于锂电池、镍氢电池等其他新能源电池,氢燃料电池具有氢储能能量密度高、零污染零排放、补给速度快、续航能力长、整车重量轻的优点。氢储量丰富,可从海水中开发。氢气热值大约是石油的3倍,产物却只有水,水可以再次分解氢。“氢燃料电池在使用寿命结束后,并不会对环境造成污染。而锂离子电池则含有很多重金属,如果回收不当,就会对环境造成污染。直接加氢耗时在5分钟左右,续航一般超过500公里,锂电池充电时间长,续航较短。在低温环境下,锂电池续航里程大打折扣,氢燃料电池则不受影响。”广州海珀特科技有限公司CMO段清泉说。 由此,加之技术的进步以及燃料电池关键卡脖子的“八大件”(电堆、膜电极、双极板、质子交换膜、催化剂、碳纸、空气压缩机、氢气循环系统)都有补贴等政策的推动,氢燃料电池汽车将在交通运输领域发挥更大的作用。柴茂荣建议,我国应该加快放开乘用车市场,通过规模化降成本和技术迭代,提高安全性、可靠性,这是非常重要的一点。“只有把乘用车发展起来,量才能上去,成本才能降下来。燃料电池汽车,乘用车是绕不开的路,因为它具备了电动车的电子化和燃油车的逆变器,等于前面是电动车,后面是燃油车,是这样一套装置,所以它具备燃油车的高安全性、低成本和加‘氢’速度快的优点,又有电动车的可靠性和长寿命、高环境适应性这些条件,从零下40℃到零上60℃,整个工作范围非常广,而且加速、启动非常快,这就是最大的特点。”同时他指出,我国交通前景将以重卡、公交为突破口,建立“柴”改“氢”的工业示范,布局加氢站,扩大氢能的利用规模,逐步拓展到乘用车领域,而且在船舶方面要开发新用途。 段清泉分析称,在面向全生命周期TVO最大化的前提下,未来相当长的时间内将坚持“宜电则电、宜氢则氢”场景原则,燃料电池和动力电池路线将会在商用车领域共存,但产值最大的公路物流,特别是高速、重载和长运距的公路干线物流是氢燃料电池绝对优势应用场景。“在2026年前以政策主导推动为主,2027—2030年政策和市场共同驱动,2030年后全面进入市场化驱动。保守估计在2030年,氢能车年销量突破8万台,保有量突破40万台;乐观估计在2030年,年销量突破40万台,保有量突破100万台。” 氢能未来可期 虽然氢能离大规模产业化尚有一定距离,但其行业发展、尤其是系统应用方面呈现出令人振奋的趋势。在小型交通设备的产业化应用上,广东蓝轩氢能科技有限公司近日实现了重大突破,成功研发了全球首例400w水冷型氢能两轮车。据悉,该车单次续航突破120公里,核心系统运行寿命突破1.5万瓦时,相关性能指标均达行业领先水平,可实现零碳排放,且比锂电更安全环保,比风冷氢能技术更稳定持久。这项国内领先技术成果已进入量产准备。与此同时,可用于快递等行业的蓝轩水冷型氢能三轮车也已研发成功。该系列产品的技术特点与产业化前景得到柴茂荣先生的高度赞誉。 根据《氢能产业发展中长期规划(2021—2035年)》,到2025年,我国将形成较为完善的氢能产业发展制度政策环境,产业创新能力显著提高,基本掌握核心技术和制造工艺,初步建立较为完整的供应链和产业体系。氢能示范应用取得明显成效,清洁能源制氢及氢能储运技术取得较大进展,市场竞争力大幅提升,初步建立以工业副产氢和可再生能源制氢就近利用为主的氢能供应体系。燃料电池车辆保有量约5万辆,部署建设一批加氢站。可再生能源制氢量达到10万~20万吨/年,成为新增氢能消费的重要组成部分,实现二氧化碳减排 100万~200万吨/年。 到2030年,形成较为完备的氢能产业技术创新体系、清洁能源制氢及供应体系,产业布局合理有序,可再生能源制氢广泛应用,有力支撑碳达峰目标实现。到2035年,形成氢能产业体系,构建涵盖交通、储能、工业等领域的多元氢能应用生态。可再生能源制氢在终端能源消费中的比重明显提升,对能源绿色转型发展起到重要支撑作用。 如何才能实现这些目标?柴茂荣认为,中国氢能发展的第一步是在10年到15年内把氢的应用链打通,提高氢能利用的经济性。第二步是把减碳作为目标,再用10年至15年的时间投资研发可再生电力制氢、热解制氢、光催化制氢等绿氢制取技术,降低这些技术路线的成本。第三步是以碳中和为目标,以整体性的视角规划中国新的能源体系,在适宜布局氢能的区域、产业进行相应的投资。“目前中国在氢能普及度上落后于日本、德国,未来衡量中国氢能是否普及的标志就是看氢能乘用车是否获得较大的市场,原因在于氢能车续航距离远,氢的成本将比油低。”柴茂荣预测,2060年前后中国的能源消费总量将比当前增加20%至30%,届时除电力外,氢能、热能也会是主要的能源供应来源。 段清泉分析称,氢能实现商业化的关键,从上游制氢来看,随着技术发展,绿氢成本逐步降低,有望突破氢能产业化的关键环节;从中游储运氢来看,需进一步推动产业化、技术革新,降低成本;从下游氢能应用来看,应推动在交通、工业、发电等领域的应用。 来源:《小康》· 中国小康网
  • 《制氢与燃气技术,是演进不是革命》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-02-25
    •  氢是宇宙中最丰富的元素。工程师们正在努力克服大规模制氢燃料和改造燃气涡轮机以燃氢的挑战。   美国ASME网站,去年12月10日发表德国西门子公司英国林肯市西门子工业涡轮机械公司行业营销经理迈克尔·韦尔奇(Michael Welch)的专栏文章,谈零碳技术中的制氢与燃气发电问题。这是一篇通俗、普及知识的文章,对非专业人员是“扫盲”,也用他的实践经验,阐明了某些容易忽略的“误区”。Welch强调制氢与燃氢发电的必要性,但要实践、逐步改进,不是“革命”。他特别讲到其中的“政治”,或许更值得注意......   据美国国家海洋和大气管理局(NOAA)的数据,今年可能是开始测量温度以来最热的一年。尽管由于新冠病毒疫情大流行导致排放量暂时减少,但据估计2020年的气温有75%的可能性会打破2016年创下的纪录。全球气温继续上升的趋势,正在改变我们星球的气候。   2015年,近200个国家同意通过控制排放,应对气候变化的威胁,以便控制全球平均气温增幅比工业化前的水平高2摄氏度的范围内,并努力将增幅控制在1.5摄氏度以内。为了达到这些排放目标,许多国家和国际组织,包括欧盟,都计划在2050年前实现碳中和。2019年4月发表在《应用能源》(Applied Energy)杂志上的一项研究指出,使用正确的技术,有可能到2070年将工业温室气体的排放量减少到“净零”。   目前,世界30%-40%的电力来自燃气涡轮机,其中大部分是天然气或其他排放二氧化碳的液态燃料驱动的,二氧化碳是气候变化的主要原因。有鉴于此,制造商们正在寻找宇宙中最丰富的元素氢,作为涡轮机发电的燃料来源。因此,将天然气系统转换为燃氢燃料而不是碳基燃料,可能是能源工业脱碳的一个重要环节。   尽管花费了数十亿美元的研发(R&D)来创造这种能力,已证明从现成的分子中提取氢是困难的、能源密集型的燃料。绿色领域的许多人正在推动利用风能和太阳能,开采稀土元素。然而,从经济角度看,目前所需的资源数量使这些想法有挑战性。氢是一种清洁燃烧的燃料,但它的生产却远非清洁或简单,至少目前如此。   然而,还有其他方法,可以“走向”燃氢经济。与现在使用的100%天然气发电涡轮机不同,可以使用天然气和氢气的混合物,帮助减少碳排放量,同时逐步应对使用新燃料的挑战。然而,要想进一步发展,技术、经济和政治上的挑战必须单独解决,并使它们相结合,为氢在能源领域变得更加普及开辟道路。   从灰到蓝再到绿   燃气轮机将天然气等燃料转化为机械能的方法,是将外界正常大气压下的环境空气吸入,并将它的压力增加到约15到30个大气压。然后,发动机将空气引入燃烧罐,与燃料混合。燃料被点燃,产生热气体、通过涡轮级膨胀,带动整个燃气涡轮机旋转,驱动发电机、泵或压缩机。   根据这个简单的原理,从燃烧的角度看,主要目标是将空气和燃料混合,从而产生高温气体,在980-1370℃的温度下进入涡轮级。其结果是在590℃左右的温度下排出废气,意味着这种工艺能够在开放式循环配置下提取约40%的燃料能量。不过,这种涡轮机的燃料来源通常是天然气、液化石油气,替代能源如柴油甚至沼气也很常见。   然而,这些燃料的共同点是,它们都是碳基燃料。也就是说,当它们燃烧时,会产生二氧化碳,作为副产品主要的温室气体。   另一方面,认为环境中丰富的元素氢是一种清洁的燃料来源。氢能量密度高,几乎零污染,本身不以气体形式存在,可以在有机物质、水和碳氢化合物中找到。这些碳氢化合物构成了汽油、甲醇和天然气等燃料。供使用的氢,需要通过加热或电解,从它的化合物中提取、制备。   通过添加蒸汽,从天然气中提取氢气会产生二氧化碳,是副产品,目前被排放入大气。每提取1公斤氢气,就会产生8-10公斤二氧化碳。这种高排放制备的氢,称为“灰氢”,二氧化碳排放总量比只燃烧天然气还严重。   为了减少这种污染,需要有个捕俘、存储和隔离二氧化碳的过程。这样产生的氢被称为“蓝氢”。它可以将每燃烧1公斤氢的二氧化碳排放量减少到1-1.5公斤,大幅降低发电的碳强度。   由于氢分子很小,大多数材料都密封不住。人们必须使用正确类型的钢材,没有任何橡胶或非金属密封。目前的安全措施需要根据新的燃料组合进行调整。   由于这些原因,环保倡导者已推动使用风能和太阳能为电解装置(用电使水分离成氢和氧的设备)提供动力,输入水,提取氢气,唯一的副产品是氧气。这种发电方法的问题是,所需的初始投资成本比传统的天然气发电装置高很多。因为除了动力装置外,还需要大型风能和太阳能发电场,以及电解装置。   这个想法也有个问题,为什么要用电来生产所谓的“绿氢”,而不直接出售电力?这个提议只是说,在风力发电与负荷需求相比太多,或者输电系统不能处理这么大的量时,可以直接用过多的风能制氢,做中-长期存储,而在风力发电不足时用氢气发电。这种办法的问题是,制氢与储存设施的开支使基建成本再次升高。所以,目前工业氢气的价格是$1-2/kg,甲烷蒸汽重整和碳捕获的蓝氢可能是$1.5-2.5/kg,而在短到中期内,电解绿氢的成本为$3-5.50/kg。某些分析人士预测,在可再生能源资源丰富的地区,绿氢的成本可能降至目前工业氢气的水平,而且肯定能达到与蓝氢相当的水平。然而,这就相当于燃料价格为$18/mmbtu(百万英热单位),远远高于天然气。   此外,风能和太阳能是间歇性的。以容量因子45%左右的海上风场电解制氢项目为例,产生连续的氢气流4-4.5吨/小时,需要1GWe规模的风场、约500MW的电解槽和1000吨的氢气储罐。虽然这种规模的装置可能适合为工业或运输行业提供氢气,只是产生的氢气量不足以驱动一台50MWe的燃气轮机;然而可以看到挑战的规模:仅为提供当前工业所需的绿氢,就需要大量的可再生能源。   如果目标是使用绿色能源发电,需要现在可再生能源装机容量的许多倍,需要几万亿美元的投资和多年的建设,还要留出大片陆地或海洋地区,以满足太阳能光伏(PV)设备和风力发电场的需要。如今,每年大约有7000万吨(或者说每小时8000吨)的“灰”氢用于工业。一台50MW的燃气轮机每小时消耗约4.5吨氢,每小时8000吨氢气约相当于100MW的发电能力,而目前安装的基于天然气发电的容量是1644GW,预测到2050年将上升到3000GW。如果完全用氢取代天然气,全球的氢气产量需要增加30倍,这还没有考虑取代工业和家庭供暖的天然气用量。   为什么要氢?   要使能源工业脱碳,或者在许多国家,要使家庭供暖脱碳,并没有一种简单的方法。那些生活在冬天气候寒冷地区的人,比如英国或美国东北部,用天然气取暖和做饭所消耗的能量是他们用电的四倍。如果所有人都在家中改用电加热,需要的发电站数量将是目前的5倍,或可再生能源的20到30倍。还需要五倍的输配电能力,所有这些都是“严重”的挑战。   此外,为取代天然气或煤炭燃烧,只是用电动方案简单地改造工业过程,在技术上或经济上并不总是可行的,所以需要用更清洁的燃料取代化石燃料。更务实的办法是把氢作为家庭和工业应用的燃料。在西门子,Welch就曾参与奥钢联集团(Voestalpine)在奥地利林茨(Linz)的项目。它是欧盟资助的H2Future项目,使用绿色能源制氢,用于钢铁厂的钢铁生产,取代某些焦炭或煤炭。另一个化石燃料替代的例子是Cadent公司在英国基尔大学的HyDeploy项目,涉及将氢气混合到天然气管网,体积可高达20%,这样就可“部分”地脱碳大学的热网。   目前,全球安装的燃气轮机,使用富氢燃料的不到1%,而意大利只有一家炼油厂,声称使用100%的氢燃料。炼油厂内燃料气体的成分每小时都在变化。因此,必须设计一个系统,让它在不同的运行时间使用不同的燃料。例如,为巴西石化公司Braskem设计的一个炼油厂项目,这个系统可以在氢气浓度从0到60%(按体积计算)的情况下运行,而不会对性能产生影响。   尽管没有达到人们所期望的零碳排放,但富氢的气体混合燃料能减少CO2的排放量,足以对全球的排放产生影响。例如,使用20%氢气和80%天然气的混合物,二氧化碳排放量可以减少约7%。将混合物的氢含量增加到60%,可以减少大约20%的二氧化碳排放。这种技术现在就可用于降低CO2排放,并使全球气温上升限制在2℃以下的“轨道”,同时帮助氢经济以所需的速度发展,到2040年或更早实现净零碳排放。当然,这些数字并不是许多人希望立即看到的大幅度消减,但是朝着正确方向迈出的一步。   两步目标   2019年1月,欧洲的燃气轮机制造商(基本上包括世界上每个主要的燃气轮机供应商),通过欧洲行业协会EUTurbines宣布的协议承诺,到2020年,它所提供的燃气轮机,能够用容积20%的氢与天然气混合运行;到2030年,为客户提供的燃气轮机能用100%的氢气运行。虽然最终的目标是使用100%的氢气,但很明显,要实现这个目标并不容易。最初,大多数涡轮机很可能用混合燃料运行,而不是100%的氢气,因为根本没有足够的氢气可用。只使用氢气做燃料,以负担得起的成本获得足够的氢气,是个重大的挑战。   例如,西门子曾在瑞典的Finspong制造厂对燃气轮机进行了30分钟的发动机整体试验,实际上要找到该国所有剩余的氢气,而且要把搜索范围扩大到周边国家。现在根本没有足够的可用资源。   环保人士推动使用风能和太阳能为电解装置(即用电力将水分离成氢和氧的设备)提供动力制氢。输入的是水,唯一副产品是氧。   为了弥补这个不足,欧洲的某些项目,特别是英国,正致力以合理的成本提供充足的氢气,以便启动工业部门脱碳,并用大量氢气取代天然气。英国已经确定为6个产业集群的工业和发电脱碳研究,提供额外的资助,其中的某些集群提议使用“蓝”氢和碳捕获技术。   这个挑战一旦得到满足,涡轮机还需要进行改造,以适应新的混合燃料。燃烧系统是个需要改变的主要领域。目前是为天然气设计的,特定的可燃性范围和燃烧速度与主要含有甲烷的燃料相同。   另一方面,氢的燃烧速度快得多,约是甲烷的10倍,而且可燃性范围更广,会在不需要的时间和地点燃烧。因此,需要重新设计燃料注入器,使创建的燃烧系统能与火焰轮廓和位置“匹配”。此外,由于氢焰燃烧温度比天然气焰高,也会出现热氮氧化物(NOx)增高。   把氢气引入燃烧系统的下一个挑战是氢分子很小,大多数材料都密封不住。必须使用正确类型的钢材,而且没有任何橡胶或非金属密封。现有的安全措施,需要根据新的燃料组合做出调整。例如,标准的天然气用的瓦斯探测器,无法检测氢气泄漏。   此外,氢燃烧时会产生不同颜色的火焰,因此设计用来检测天然气蓝色火焰的火焰探测器无法“感知”氢焰,实际上肉眼看不到氢焰。   对这些挑战,已有充分的了解,也制定了各种解决方案。从技术角度看,燃气轮机行业有信心在某个时刻实现100%燃氢的低排放。因此,最大的挑战是经济:有足够的、成本合理的氢气,使能源的成本最终不会比现在的开支高出2-3倍。   为此,目前几乎所有的涡轮机制造商都在响应行业需求,解决这个问题。全球、特别是欧洲政界人士,都在推动脱碳。而且,无论如何使用化石燃料,提高涡轮机的效率,都无法达到减排的目标。因此,要么在电厂进行碳捕俘,要么使用零碳燃料。   此外,天然气管道公司之所以对这项技术感兴趣,因为到本世纪30年代中期,如果政界人士决定不再使用化石燃料,将会有数千英里长的管道成为“搁浅”的资产。因此,天然气公司正在研究如何重新利用这些资产,输运二氧化碳,或者通过现有的管道系统,输运天然气和氢气。再利用现有的基础设施资产,可能对于降低能源转型的成本,至关重要。   对于涡轮机制造商,主要的挑战是氢气从哪里来。这是市场和政治家们需要认真思考的问题。如果还要再花费30年时间才能有足够的氢气驱动涡轮机发电,那么在2030年前推动研究人员和公司开发100%的燃氢涡轮机是没有意义的。   如果要推动企业在研发上投入数百万美元,创造100%的燃氢能力,就要有足够的燃料来运行燃气涡轮机。虽然风电场、电解装置和零碳污染的的绿氢是个好主意,但如要求一个1000MW的风电场连续运行一个50MW的燃气涡轮机,这种计划是不切实际的。因此,需要更严肃地看待各种甲烷重整方案和碳捕获。   这是政治   利用氢气做燃料,虽然存在技术和环境方面的挑战,但往往忽视总体政治层面的问题。此外,每个地区或国家的政治各不相同,能源战场也变成了不同方法的拼图,就像个多方设计、多边纤维的“棉被”。   例如德国就不相信“碳捕俘”,因为它没有任何适宜的地质构造储存捕俘的二氧化碳。但如挪威、英国和澳大利亚,对碳捕俘与封存非常满意,因为它们有废弃的海上油田和气田,可以储存捕俘的二氧化碳。实际上,挪威多年来一直在乌齐拉(Utsira)的近海含水层“扣押”二氧化碳。美国多年来一直在利用二氧化碳提高德克萨斯州二叠纪盆地的石油采收率,而在怀俄明州,也和加拿大人一样,多年来一直用于最大限度地提高老油田的石油采收率。   此外,许多政府不想放松环境立法,要达到与天然气类似的排放水平,这是个挑战。因此,如果这些政府坚持用氢气降低碳和氮氧化物的排放量,单靠涡轮机是不够的。这意味着必须有燃烧后尾气净化系统,才能达到NOx个位数的水平,而这必将进一步提高电力成本。最终的结果是电厂和燃料更加昂贵,使能源成本上升,直至成为政治“禁忌”。因为,每个人都想要清洁能源,但没有人愿意为此付出更多,对未来至关重要的是消除能源贫困。   这项技术取得成功的核心,在于找到技术、经济和政治的平衡,使我们能每天24小时、每周7天、一年365天都有充足的清洁电力。这是个有多种战略的复杂领域,需要各方都做出妥协,才能使整个氢经济朝着正确的方向发展。   也许可以从过去的经验中吸取教训:其中一个例子是生物质气化倡议,各种努力集中在知识研究上,进行各种研究并试图找到最终的、最佳可能方案是什么,创造了个环境,结果什么也没有建成。通过建立商业规模的示范装置,重复设计并从中学习,当然可以更快地降低成本,而不是通过更多的研究和开发,尝试和改进的幅度仅为1%。首先建个装置,证明它、测试它,然后可以追溯和尝试降低10%或15%的设施成本,通过重复设计和学习继续削减成本,而不是向全球承诺,但不兑现。   幸运的是,欧洲各国政府已变得更加务实,认为这才是需要采取的步骤。它们承认,虽然最终寻求减排和低成本的效率不高,但能从今天达到2040年需要的水平,无需试图一次性实现革命性飞跃的失败,而更像个进化过程。在欧洲这个政治舞台上,有良好的支持和现实的做法。