《大连化物所化学链合成氨研究取得新进展》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2018-11-06
  • 近日,中国科学院大连化学物理研究所复合氢化物材料化学研究组(DNL1901)陈萍研究员、郭建平副研究员团队在化学链合成氨研究方面取得新进展。该团队基于多年来对储氢材料及催化合成氨与氨分解反应的研究积累,构建了一种基于氢化物和亚氨基化合物的化学链合成氨新过程。相关研究成果发表于《自然-能源》(Nature Energy,DOI: 10.1038/s41560-018-0268-z)上。

      氨的合成关乎粮食、水、空气和能源等问题。基于可再生能源的合成氨新方法与新工艺是催化、材料和能源化学领域的前沿课题。在过渡金属上进行的催化反应中,由于反应物种的吸附能之间存在固有的线性关系(scaling relations),所以难以实现氨的低温高效合成。通过将合成氨反应解耦为氮化和加氢两个分步骤,即化学链过程,是规避scaling relation的有效策略。基于前期的积累,该研究团队提出了一种以碱(土)金属亚氨基化合物为氮载体的低温化学链合成氨技术,即碱(土)金属的氢化物首先通过“固定”氮气生成相应的亚氨基化合物,随后将反应气氛切换为氢气使得亚氨基化合物加氢释放出氨气。其中,Li-N-H和Ba-N-H体系具有适中的氮化及加氢反应热力学,在过渡金属催化剂的协助下,可在常压和100°C的条件下实现氨的合成。在250°C下,该过程的产氨速率约大于高活性Cs-Ru/MgO催化过程一个数量级。而目前文献报道的化学链合成氨方法主要是基于Al/AlN/Al2O3, Cr/CrN/Cr2O3等体系,由于包含了强放热的水解反应和强吸热的还原反应,这些过程所需的温度都很高(>1000°C)。

      基于此项研究结果,该研究团队构建了一条基于可再生能源的化学链合成氨工艺流程,即利用可再生能源产生的电能进行空分制氮和电解水制氢,然后将氮气和氢气交替通入载有氢化物的反应器中分别进行氮化和加氢反应,未反应的气体经分离纯化后循环使用。此工艺可在较为温和条件下进行(常压,100-300°C),避免了在Haber-Bosch过程中高能耗的气体压缩过程,显著提高了能效。其中合成氨及吸附分离氨等部分单元已经进行了实验验证。此工艺为可再生能源的储存与利用及小规模分布式合成氨工厂的构建提供了一个方案。

      陈萍研究团队在碱(土)金属氢化物和(亚)氨基化合物等方面进行了近二十年的积累。此项研究是继该类化合物应用于储氢(Nature)、催化氨分解(Angew. Chem. Int. Ed.)、催化氨合成(Nature Chem.)之后的又一重要进展。

      该研究得到国家自然科学基金委、中日政府间合作项目、教育部能源材料化学协同创新中心(iChEM)、我所甲醇转化与煤代油新技术基础研究专项(DICPDMTO)、中国科学院青促会项目的资助。

相关报告
  • 《大连化物所储氢材料研究取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2017-03-14
    • 近日,大连化物所所复合氢化物材料化学研究组 (DNL1901) 陈萍研究员、吴国涛研究员团队在储氢材料研究方面取得新进展,通过多组分氢化物复合,显著改善了毫克 (NH 2) 2-立储氢材料的吸脱氢热力学和动力学性能、 实现了 100 ℃ 以下可逆吸脱氢相关研究成果发表在先进能源材料 (DOI: 10.1002/aenm.201602456) 上。   氢是一种洁净的能源载体能够使可再生能源和核能得到有效的储存与利用。但是氢气在凝聚态物质中高效存储目前仍是氢能大规模应用的瓶颈。由该研究团队设计的金属氨基化合物储氢体系中,镁 (NH 2) 2-立材料具有较高的储氢容量 (5.6wt%) 和较好的可逆性、 被认为是最具车载实用前景的储氢材料之一。但是该体系仍需要较高的吸氢温度 (150 ℃) 和放氢温度 (180 ℃) 因此利用燃料电池的废热不足以为加氢及脱氢提供热源。近年来,多家国内外科研机构对该材料进行研究力图改善材料脱氢热力学和动力学两方面的性能。  
  • 《大化所长链α-烯烃生物合成研究取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-03-07
    • 近日,大化所合成生物学与生物催化创新特区研究组周雍进研究员与瑞典查尔姆斯理工大学Jens Nielsen教授合作,通过构建酵母细胞反应器,高效的合成出了长链α-烯烃。相关研究成果发表于合成生物学领域杂志《美国化学会—合成生物学》(ACS Synthetic Biology, 2018, DOI: 10.1021/acssynbio.7b00338)上。 长链(C12―C20)α-烯烃(long-chain α-alkene)是制备生物燃料、增塑剂、高性能合成润滑油、洗涤剂和香料等多种化工产品的重要原料。目前,其主要来源于化石资源,通过石蜡裂解、烷烃脱氢及乙烯齐聚等化学工艺生产获得。 为了拓展长链α-烯烃可持续生物合成的路线,该研究团队以酿酒酵母为宿主,通过脂肪酸脱羧反应合成长链α-烯烃。科研人员通过比较不同酶效率,发现来源于荧光假单胞菌(Pseudomonas fluorescens)的UndB酶可高效合成长链α-烯烃。此外,研究团队还通过改造脂肪酸代谢强化前体的供给,引入电子传递链,从而提高生物合成效率;通过引入α-烯烃转运蛋白,增加了长链α-烯烃的分泌,从而降低产物分离成本;通过设计动态代谢调控策略,平衡了细胞生长与产物合成,降低了代谢负担,从而提高了酿酒酵母性能。