《CO2激光焊接为玻璃基光子集成电路创造了可靠的光纤连接》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-07-19
  • 近日,由弗劳恩霍夫协会(Fraunhofer IZM)牵头的研究团队宣布开发出一种无粘合剂、节省空间和稳定可靠的CO2激光焊接工艺,能够用于将光纤固定在熔融石英玻璃基板上的光子集成电路(PICs)。

    据介绍,这项工作是围绕“PICWeld”欧洲之星项目开展完成的,参与方包括了Fraunhofer IZM的研究人员与他们的合作伙伴LioniX International BV、Phix Photonics Assembly和ficonTEC Service GmbH。目前,该工艺已经集成到一个自动化校准系统中,并且凭借其高重现性和可扩展性验证了工业成熟度,并使得玻璃-玻璃连接技术在商业应用中极具吸引力。

    以往,基于光子集成电路(PICs)的小型化系统可以方便地用来理解可见光在生物过程中的作用。不过,这种系统需要高度稳定的光纤连接,而其常用的胶粘剂本身具备柔软性,会导致组件的位置随着时间的推移而改变,同时也会在两层玻璃之间产生干涉点。这将导致信号衰减,并且随着胶粘剂的老化,光纤连接也会变得脆弱不稳定。胶粘剂连接长期过程下会发生光学退化,并造成相当高的光学传输损耗,这在关键的生命科学和医疗技术应用中恰恰是非常致命的漏洞。

    针对这些问题,该合作研究团队基于CO2激光焊接开发了一种制造玻璃玻璃透明接头的新工艺,使其更简单、更坚固、更耐用。新的自动化系统,可以实现无粘合剂界面,以及波导集成PICs焊接光纤的高效耦合。

    在这种工艺真正投入应用之前,研究人员仍然需要克服许多挑战。由于玻璃光纤和衬底的体积不同,这两部分的热容也不相等。这种差异导致非常不同的加热和冷却行为,这可能导致一系列问题,例如在冷却过程中发生的变形和开裂。上述光子专家们的解决方案是通过单独的、单独可调的激光器均匀地预热衬底,从而同时实现光纤和衬底的熔化阶段。

    据悉,新的自动对准系统配备了高达1300℃的热过程监测,精确到1μm的定位系统,图像识别过程和控制软件。在项目过程中,这个系统用于焊接接头,从而对其功能和初始工艺进行测试。

    “PICWeld”项目于2021年完成后,又立即启动了第一个后续项目,将开发用于准直器、波导芯片和多透镜阵列的光纤耦合新技术。

    Fraunhofer IZM的Alethea Vanessa Zamora博士解释称:“通过我们的CO2激光焊接系统,我们扩展了现有原理背后的过程。基于其高度自动化的潜力,客户如今能够用上耦合效率最高的PICs。这样的产业融合,意味着生物光子学的应用领域的飞跃,也意味着量子通信和高性能光子学的飞跃。”

相关报告
  • 《科学家利用激光耦合开发出新型全光子集成电路技术》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-12-21
    • 光子学技术的应用日益广泛,不过为了充分发挥其潜力,光子学技术产品必须变得更小、更便宜、更容易生产。当下,全球范围内的研究人员在这些方面已经取得了进展,但如何让电路在较短波长的光下顺畅运行仍然是一个挑战。 近期,来自Nexus Photonics、加州大学圣巴巴拉分校(UC Santa Barbara)和加州理工学院的研究人员们宣布成功开发出一种技术,使光子芯片能够在可见到近红外光谱中工作。这项技术有望使这些组件更小、更强大;并且其依赖于电子制造中常见的方法,有望以低成本实现大规模生产。 最终,该技术有利于将高性能光子学引入新的市场和应用,如增强现实和虚拟现实、医疗保健和可见/近红外波长的原子钟等。而且它在大规模生产这一点上的优势,将帮助大幅降低激光和光子电路的价格。 一波三折:光子电路制造技术开发过程 光子电路小型化的一个障碍是将激光连接到光子电路本身,要将其插入每个路径那显然是不切实际的。在2005年,由约翰·鲍尔斯领导的加州大学圣巴巴拉分校的研究人员解决了硅电路的激光连接问题。他们克服了这一障碍,将激光材料直接粘在硅上,并将光线向下弯曲到波导中。 此后,不少研究机构对类似的技术进行过开发,英特尔还以每年数百万美元的押注力推其商业化。但可惜的是,这些解决方案只适用于波长大于1100纳米的深红外光。由于每个半导体都有带隙能量,能量更高或波长更小的光子会被材料吸收。 例如,硅的带隙大约是1100纳米,那么紫外线(UV)、可见光,甚至一些红外线都会被硅波导吸收。这导致虽然硅在电子学方面表现良好,但它在光子学方面的应用却很有限。 不过,带隙约为250纳米、处于紫外线光谱部分的氮化硅材料就比较具备开发潜力。而且由于它是一种硅化合物,它很容易与电子制造过程集成。它主要的成分硅和氮在地球上也很丰富,而且价格便宜。 在确定了合适的材料后,由于氮化硅的折射率与激光材料的折射率不同,将激光连接到波导又成为了研究团队面临的新挑战。因为这会使得激光层的光束很难弯曲到它下面的氮化硅波导中。 在实验中,研究小组在激光的同一平面上添加了折射率接近氮化硅的中间材料。通过这种方式,激光可以正面进入过渡波导,然后从具有类似光学特性的材料定向向下进入氮化硅。就这样,该团队在设计方案上向前迈进了一步,但要使该工艺与标准电子制造工艺兼容也是一大棘手问题。 斩获成果:利用氮化硅实现低成本商业铸硅 最终上述研究团队终于优化了这项技术,他们打造出完整加工的4英寸晶圆(里面包含数千个器件),并使其在小于一毛钱成本的情况下,性能远超大型商业系统。 颇具突破性意义的是,它首次为可见光到近红外波长的全光子集成提供了一个可行的、可扩展的解决方案。相关研究结果已发表在《自然》(Nature)杂志上。 这种激光耦合技术将使高功率精密光子学的成本降低几个数量级,应用前景广阔。通过生物传感和DNA测序等应用,该技术在生物医学科学中具有潜力。它还可以为原子物理学和量子方面的研究开辟道路。 商用硅晶圆的使用,这也将意味着世界上每一所学校的每一位大学教授都能负担得起目前只有在大型研究机构才能实施的设备和实验。 此外,这项技术还可以用来检测同一芯片上的光线来自哪里。 目前,该团队计划最终将光子电路和电子电路集成到同一个芯片上,在成本和性能上实现更高的效率。
  • 《玻璃与金属焊接新途径:超快激光器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-06
    • 来自英国赫瑞瓦特大学的科学家团队,日前通过超快激光系统,实现了玻璃和金属的焊接。这一流程可用于航空航天、国防、光学技术以及医疗保健制造业。 利用超快激光焊接方法,研究人员可以将各种光学材料(如石英、硼硅酸盐玻璃和蓝宝石)融入包括铝、钛和不锈钢等金属中。这种方法在材料熔合过程中产生非常短的皮秒红外光脉冲。 赫瑞瓦特大学激光创新制造中心主任兼教授Duncan Hand表示:“从传统意义上来讲,由于玻璃和金属的不同热性能,将玻璃和金属等不同材料焊接在一起非常困难 - 高温和高度不同的热膨胀会导致玻璃破碎。目前,涉及玻璃和金属的设备和产品通常是采用粘合剂结合在一起,这一过程很杂乱,而且粘合的部件会逐渐出现移动的现象。放气也是一个问题,因为粘合剂会不断释放出有机化学物质,这样可能会导致产品寿命缩短。” Hand指出,要焊接的部件紧密接触,激光通过光学材料进行聚焦,在两种材料之间的界面处提供非常小且高强度的点。这样一来,研究团队在一个几微米宽的区域内实现了兆瓦峰值功率,在材料内部形成了一个由高度受限的熔化区域包围的微等离子体。该团队在-50°至90°C的温度下对焊缝进行了测试,结果表明它们足够坚固,能够承受极端条件。 Hand及其团队日前正在与由英国牛津激光公司、Coherent Scotland、Leonardo以及英国古奇·休斯古公司领导的财团合作,开发激光加工系统原型,以实现该技术的早日商用。