《科学家揭示钠金属负极SEI的形成过程与失效机理》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-12
  • 来自科学网

    北京时间2023年7月5日,北京大学潘锋&杨卢奕团队在Chem期刊上发表题为“In-situ probing the origin of interfacial instability of Na metal anode”的新研究。

    作为一种理想的钠离子电池负极材料,钠金属的实际应用受制于其不稳定的SEI:一方面钠电电解液中SEI存在比锂电更为严重的溶解现象,导致了持续的界面副反应;另一方面SEI仍缺乏足够的机械强度来抑制钠枝晶的生长。同时,SEI的瞬间形成过程导致了其电化学生长机制难以解析,离位表征的测试结果不可避免与真实电池工况条件下的状态存在偏差,尽管大量研究对SEI的化学成分与物理性质进行了表征与分析,但对于SEI生长过程的直接观测目前仍是一个棘手的挑战。该工作通过对多种原位界面表征手段进行联用,多维度联合揭示了钠金属负极SEI的电化学生长过程,对影响SEI稳定性的关键因素进行了系统的研究。

    该工作第一作者是冀昱辰和邱际民,通讯作者是潘锋教授和杨卢奕副研究员。

    通过原位三维共聚焦显微镜、电化学石英晶体天平、原位原子力显微镜、原位拉曼、电化学微分质谱等原位分析手段,结合冷冻电镜、飞行时间二次离子质谱等离位分析手段,作者揭示了SEI的形成过程可以分为两个阶段:钝化阶段(阶段一)与生长阶段(阶段二)。SEI的化学-机械不稳定性的起因与SEI的电化学生长过程密切相关。在SEI生长的“钝化阶段”(~2.3 V到~1 V),可溶性有机物是SEI的主要成分,它们发生溶解导致钠金属表面不能被有效钝化进而暴露在电解液中。当电位低于1 V时,进入了SEI的“生长阶段”,同时形成了大量的有机物与无机物。但由于高溶解度,有机物的反复形成和溶解导致了无机物与表面发生分离,致使SEI演化为有机/无机组分混杂在一起的均匀分布的结构。该结构由于以有机物为主体导致了SEI具有较差的机械强度,而有机物的溶解也会导致内嵌的无机组分失去支撑进而发生脱离,导致SEI整体都很难在电解液环境中稳定存在。

    通过加入电解液添加剂等方式在钝化阶段预构建一层无机钝化层,可以有效地增强SEI的稳定性。钠金属表面被稳定的无机钝化层钝化,隔绝其在电解液环境中的暴露。在随后的生长阶段,SEI在该钝化层基础上进一步演化,使无机组分继续生长至更厚、更硬的无机组分层紧贴在钠金属表面,而有机分解产物只能生长在无机层的顶部。该结构的SEI提供了更高的机械强度与化学稳定性,更好地抵抗界面副反应与枝晶生长。

    通过研究钠金属负极SEI的形成过程与溶解模型,该研究工作揭示了SEI的组分、结构与其稳定性之间的关联,为今后的相关电解液、界面优化设计提供了新的思路。

  • 原文来源:https://paper.sciencenet.cn/htmlpaper/2023/7/2023752333789983208.shtm?id=83208
相关报告
  • 《科学家揭示二碲化钼(MoTe2)相变过程》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-19
    • 一项新的研究表明,作为未来电子产品候选材料的二硫化钼(MoTe2)的相变比先前认为的更加复杂。 本研究中发现的效果的例证(来源:A. Weber/EPFL) 一阶相变,即系统获得或损失的热量,是日常生活的一部分。一个典型的例子是将水煮沸成蒸汽或将水冷冻成冰。 由洛桑联邦理工学院(EPFL)物理研究所Hugo Dil指导的研究小组目前正在分析电子如何对MoTe2中的一级相变做出反应,MoTe2是一种具有特性的金属,可能对未来的电子设备有价值。 研究人员探索了MoTe2的晶体结构转变过程,其中晶体结构在没有电极化(正负电荷分离的度量)与冷却金属至-23°C后的电极化之后发生变化。 这是一种独特的现象,因为电极化使得导电电子基于它们的动量来定向它们的自旋。研究人员在瑞士光源使用一种称为旋转和角度分辨光电子能谱的方法检测到了这一点。 物理学家通常认为一级跃迁在转变温度(例如,沸水100°C)下意外发生的。但是研究人员注意到,MoTe2表面附近的电子在转变附近响应得很慢,并且与晶体结构中的振动相比,它的相互作用更加强烈。 科学家们确定,在室温下,第一纳米晶体具有有序的极性结构,位于动态波动的电极化区域的顶部。整个晶体只有经过转变冷却后才会有有序排列。
  • 《Cell:科学家揭示端粒酶内部工作机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-06-13
    • 端粒酶是一个RNA-蛋白复合物(RNP),负责使用其端粒酶逆转录酶(TERT)和包含模板的端粒酶RNA(TER)在染色体3’末端延长端粒DNA。它的活性是人类健康的关键决定因素,影响着衰老、癌症以及干细胞更新。但是由于缺乏端粒酶、尤其是结合着端粒DNA的端粒酶的原子模型,我们对端粒DNA反复合成的机制并不是很清楚。 为了解决这个问题,来自加州大学洛杉矶分校等单位的科学家们在Z. Hong Zhou及Juli Feigon的带领下使用冷冻电子显微镜揭示了四膜虫中结合了端粒DNA的活化端粒酶的原子结构,分辨率达4.8埃,相关研究成果于近日发表在《Cell》上,题为“Structure of Telomerase with Telomeric DNA”。 研究人员发现端粒酶的催化核心是一个由TERT和TER连锁的复杂结构,包括一个过去未完全表征的TERT结构域,可以与TEN结构域相互作用,在物理上封闭TER,以此调节其活性。 总的而言,这项研究揭示了端粒酶催化核心及其与端粒DNA相互作用形成的复合物的原子结构,为端粒酶组装和循环提供了新的观点,同时还为逆转录酶RNP提供了一个新的范例。这将为促进人们了解端粒及端粒酶在衰老、癌症等一系列生命过程中发挥的作用奠定基础。