《Science丨代谢不灵活性在肝脏再生过程中促进线粒体健康》

  • 编译者: 李康音
  • 发布时间:2024-06-19
  • 2024年6月14日,德克萨斯大学西南医学中心Prashant Mishra实验室的博士后王逊等在Science杂志发表了题为Metabolic inflexibility promotes mitochondrial health during liver regeneration的研究论文。

    作者首先在分离的再生肝脏线粒体中发现,脂肪酸和酮体的含量增加。肝脏是一个区域性器官,不同区域其再生能力存在差异。作者发现不同区域线粒体中脂肪酸和酮体增加比例与其区域的再生能力呈正相关。通过同位素示踪发现,再生的肝脏中,[U-13C]棕榈酸被代谢产生更多的β-羟基丁酸(M+2)和乙酰辅酶A(M+2),以及在分离的原代的再生肝细胞中,[1-14C]棕榈酸会被代谢产生更多的[14C]二氧化碳。提示肝脏再生过程中,肝脏脂肪代谢能力上升。

    脂肪酸氧化主要在线粒体进行,β-氧化过程中,产生NADH和FADH2,随后被线粒体ETC氧化。线粒体ETC由5个复合物组成,为了验证线粒体ETC在其中作用,作者选取 Ndufa9f/f (复合物I),Sdhaf/f (复合物II),Uqcrqf/f (复合物III),Cox10f/f (复合物IV) 和 Atp5f1af/f (复合物V),5个品系老鼠,通过AAV注射,分别特异性地阻断肝细胞的电子传输。作者发现,经过70%肝脏切除术诱导肝脏再生后,野生型和Ndufa9缺失的肝脏再生正常,Sdha,Uqcrq 或Atp5f1a缺失的肝脏无法再生,并且老鼠在术后1-2天内全部死亡。 Cox10缺失的肝脏无法再生,但是老鼠全部存活,同时有大量的脂肪堆积。先前,谢渭芬实验室和惠利健实验室,以及周斌实验室和Jan S. Tchorz实验室研究揭示,胆管细胞在特定条件下,可转分化为肝细胞。经过作者分析,Cox10缺失的肝脏中,胆管细胞经过转分化,成为肝细胞,以支持肝脏再生。

    作者为了探寻肝脏中堆积的脂肪来源,使用同位素示踪发现,经过重水(D2O)处理后,肝脏再生过程中,肝细胞内的脂肪并不由其自身合成,而是来自外周脂肪组织的分解。先前丁秋蓉实验室报道,肝脏再生过程中,外周脂肪分解产生的脂肪酸转运进入肝脏,通过影响MIER1蛋白水平,进而影响肝脏再生。β-氧化的重要产物之一是乙酰辅酶A,作者利用代谢组学检测,Cox10缺失的肝脏中,乙酰辅酶A水平显著低于正常肝脏。乙酰辅酶A对组蛋白乙酰化修饰不可或缺。作者利用CHIP-seq发现,组蛋白乙酰化水平下降,导致与细胞周期有关的基因表达下降,进而影响肝脏再生。

    肝脏中乙酰辅酶A的来源不止于脂肪酸,葡萄糖和乙酸为什么不能产生乙酰辅酶A?作者发现,脂肪的堆积提升肝细胞的PDK4表达,而PDK4的上升,通过磷酸化PDH,抑制丙酮酸到乙酰辅酶A的转化。脂肪的堆积同时降低肝细胞的ACSS1/2蛋白水平,进而抑制乙酸转化为乙酰辅酶A。为确认葡萄糖来源和乙酸来源的乙酰辅酶A转化是否受到抑制,作者利用同位素示踪,通过[U-13C]葡萄糖或[U-13C]乙酸钠发现,Cox10缺失的肝脏中,乙酰辅酶A(M+2)/ 丙酮酸(M+3)或乙酰辅酶A(M+2)/ 乙酸(M+2)的比值显著下降,提示由葡萄糖或者乙酸合成乙酰辅酶A的能力下降。作者为验证PDK4在其中的作用,利用CRISPR-Cas9技术和抑制剂处理肝脏,发现Pdk4缺失或者被抑制时,线粒体ETC缺失的肝细胞进行增殖。

    综上所述,该研究发现肝脏再生过程中,肝脏利用其代谢的不灵活性,通过脂质积累,抑制线粒体ETC功能障碍的肝细胞的增殖,以保护肝脏健康。
相关报告
  • 《Science | 食物感知促进MFFS131的磷酸化和肝脏线粒体的碎裂》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-29
    • 2024年4月26日,马克斯-普朗克代谢研究所等机构的研究人员在 Science 期刊发表了题为Food perception promotes phosphorylation of MFFS131 and mitochondrial fragmentation in liver的文章。 肝脏线粒体在适应不断变化的营养状态的新陈代谢过程中发挥着核心作用,但它们在营养供应预期变化时的动态调节问题仍未得到解决。 该研究发现感官食物知觉通过蛋白激酶 B/AKT (AKT)依赖的线粒体裂解因子(MFFS131)丝氨酸 131 磷酸化迅速诱导肝脏线粒体破碎。这种反应是通过激活下丘脑表达前绒毛膜促皮质素(POMC)的神经元介导的。在体外,非磷酸化的 MFFS131G 基因敲入突变会减弱 AKT 诱导的线粒体破碎。在体内,MFFS131G 基因敲入小鼠显示出肝脏线粒体动力学的改变,以及胰岛素刺激下抑制肝脏葡萄糖产生的功能受损。因此,快速激活下丘脑-肝脏轴可使线粒体功能适应预期的营养状态变化,从而控制肝脏葡萄糖代谢。
  • 《Nature | 人类肝脏再生的多模式解码》

    • 编译者:李康音
    • 发布时间:2024-05-06
    • 2024年5月1日,海德堡大学的研究人员在 Nature期刊发表了题为Multimodal decoding of human liver regeneration的文章。 肝脏具有独特的再生能力,然而,在急性肝衰竭(ALF)的情况下,这种再生能力往往不堪重负,紧急肝移植成为唯一的治疗选择。 该研究为了加深对人类肝脏再生的了解,研究人员使用成对的单核 RNA 测序结合健康和 ALF 移植人类肝脏的空间图谱,生成了人类肝脏再生的单细胞泛系图谱。研究人员发现了一个在人类肝脏再生过程中出现的新型 ANXA2+ 迁徙性肝细胞亚群,以及一个在对乙酰氨基酚(APAP)诱导的小鼠肝脏再生模型中出现的必然亚群。对APAP诱导的小鼠肝损伤后坏死伤口闭合和肝细胞增殖的多个时间点进行的研究表明,伤口闭合先于肝细胞增殖。通过对 APAP 诱导的小鼠肝损伤进行四维眼内成像,可以在坏死区域边缘发现运动的肝细胞,从而使肝细胞片集体迁移以实现伤口闭合。肝细胞 ANXA2 的缺失会减少肝细胞生长因子诱导的体外人类和小鼠肝细胞迁移,并使 APAP 诱导的小鼠肝损伤后的坏死伤口闭合失效。 总之,该研究工作剖析了肝脏再生的一些意想不到的方面,证明了伤口闭合与肝细胞增殖之间的脱钩,并发现了一种新的迁移性肝细胞亚群,它能在肝损伤后介导伤口闭合。旨在促进快速重建正常肝脏微结构和修复肠肝屏障的疗法可能会推动再生医学新领域的治疗发现。