《Science Advances | 自主DNA分子马达专为快速复杂运动和先进纳米机器人设计的DNA折纸表面导航》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-09-24
  • 2023年9月22日,新加坡国立大学的研究人员在Science Advances杂志发表了一篇题为Autonomous DNA molecular motor tailor-designed to navigate DNA origami surface for fast complex motion and advanced nanorobotics的论文。

    该研究介绍了一种为三角形 DNA 折纸基底量身设计的自主非bridge-burning DNA 电机。这是一种可平移的双足分子马达,但在折纸上自闭圆形轨道的直线段和曲线段上都能实现有效平移,包括通过单手跨步实现约 90° 的急转弯。该电机具有很强的方向性,其速度在迄今报道的自主人工分子马达中创下了新高。由此产生的 DNA 电机-折纸系统具有复杂的平移-旋转运动和强大的纳米机器人能力,有可能提供一个自足的 "种子 "纳米机器人平台,实现自动化或扩大许多应用。



    本文内容转载自“ AI Energy”微信公众号。

    原文链接: https://mp.weixin.qq.com/s/nsXU5x5EOb9CHScTJgi5lA

  • 原文来源:https://www.science.org/doi/10.1126/sciadv.adi8444
相关报告
  • 《新型DNA折纸电机打破了纳米机器的速度记录》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2020-03-09
    • 通过一种被称为“DNA折纸”的技术,科学家们已经制造出了迄今为止最快、最持久的DNA纳米马达。Angewandte Chemie发表了这项发现,它为如何在纳米尺度上优化马达的设计提供了蓝图——比典型的人类细胞小数百倍。 这篇论文的资深作者、埃默里大学(Emory University)的化学教授哈立德•萨拉塔(Khalid Salaita)表示:“纳米级马达在生物传感、合成细胞的制造以及分子机器人技术方面有着巨大的应用潜力。”“DNA折纸让我们得以修补马达的结构,并梳理出控制其性能的设计参数。” 新的DNA马达是棒状的,使用RNA燃料在直线上持续滚动,无需人工干预,速度可达每分钟100纳米。这比以前的DNA马达快了10倍。 萨拉塔也是华莱士·h·库尔特生物医学工程系的教员,这是佐治亚理工学院和埃默里大学的一个联合项目。这篇论文是由Salaita实验室与埃默里大学医学院(Emory’s School of Medicine)助理教授柯永刚(Yonggang Ke)和华莱士·h·库尔特(Wallace H. Coulter)生物医学工程学院(Department of Biomedical Engineering)合作完成的。 “我们设计的DNA马达速度很快,”柯说,“但要实现大自然生物马达的通用性和效率,我们还有很长的路要走。”最终,我们的目标是制造出与蛋白质的复杂程度和功能相匹配的人造马达,这些蛋白质可以在细胞中移动货物,并让它们发挥各种功能。” 使事情的DNA,绰号DNA折纸在日本传统折纸工艺,利用DNA碱基的自然亲和力,G、C、T配对。通过移动DNA链上的字母序列,研究人员可以使DNA链以不同的方式结合在一起,形成不同的形状。DNA“折纸”的硬度也可以很容易地进行调整,因此它们可以像干燥的意大利面一样笔直,也可以像煮熟的意大利面一样弯曲缠绕。 近几十年来,不断增长的计算能力以及DNA自组装技术在基因组学行业中的应用大大推动了DNA折纸领域的发展。 DNA马达的潜在用途包括:纳米胶囊形式的药物输送装置,当到达目标位置时会打开;纳米计算机和在纳米级装配线上工作的纳米机器人。 “这些应用程序现在看起来像是科幻小说,但我们的工作正在帮助它们更接近现实,”埃默里(Emory)博士候选人,第一篇论文的作者阿里西娜·巴兹拉夫尚(Alisina Bazrafshan)说。 DNA马达的最大挑战之一是,控制纳米级运动的规则与人类所见物体的规则不同。分子规模的设备必须通过不断的分子弹幕来对抗自己的方式。这些力会导致这种微小的装置随机漂移,就像漂浮在河面上的花粉粒一样,这种现象被称为布朗运动。 液体的粘度也会对像分子这样微小的物体产生更大的影响,因此水变得更像糖蜜。 许多现有的DNA马达通过机械式的跨腿运动“行走”。问题在于两足动物的内在倾向往往是不稳定的。多于两条腿的步行电动机可以获得稳定性,但是多余的腿会使它们减速。 埃默里(Emory)研究人员设计了一种可旋转的杆状DNA电机,从而解决了这些问题。电机的杆或“底盘”由16条DNA链组成,这些DNA链以四乘四堆叠的形式结合在一起,形成具有四个平坦侧面的梁。从杆的每个表面伸出36比特的DNA,就像小脚一样。 为了促进运动,将电机放置在RNA轨道上,RNA是一种碱基对与DNA碱基对互补的核酸。 RNA拉动电机一侧的DNA脚并将其绑定到轨道。一种仅靶向与DNA结合的RNA的酶,然后迅速破坏结合的RNA。这会导致电机滚动,因为电机下一个面上的DNA脚由于对RNA的吸引力而向前拉。 滚动的DNA马达形成了一条持久的路径,因此它继续沿直线运动,这与行走的DNA马达更随机的运动相反。滚动运动还增加了新的DNA电动机的速度:它可以在两到三个小时内传播人类干细胞的长度。以前的DNA马达需要大约一天的时间才能覆盖相同的距离,而大多数马达却缺乏将其保持那么远的毅力。 最大的挑战之一是在纳米级上测量电动机的速度。通过在DNA马达的任一端添加荧光标签并优化荧光显微镜上的成像条件,可以解决该问题。 通过反复试验,研究人员确定刚性杆的形状对于直线运动是最佳的,并且电动机每个面上的36英尺为速度提供了最佳密度。 Bazrafshan说:“我们为DNA折纸电机提供了一个可调平台,其他研究人员可以使用该平台来设计,测试和优化电机,以进一步推动该领域的发展。” “我们的系统允许您测试各种变量的影响,例如底盘形状和刚度以及支脚的数量和密度,以微调您的设计。” 例如,哪些变量会引起DNA马达绕圈运动? 还是电动机绕过障碍物? 还是可以响应特定目标的人? Bazrafshan说:“我们希望其他研究人员根据这些发现提出其他创造性的设计。”
  • 《DNA'折纸'在纳米机器的新兴领域崭露头角》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-09-20
    • 就像蒸汽机为工业革命奠定了基础,微晶体管引发了数字时代一样,由DNA制成的纳米级设备正在开启生物医学研究和材料科学的新纪元。 “科学”杂志在埃默里大学化学教授Khalid Salaita和Wallace H. Coulter生物医学工程系研究生Aaron Blanchard的“透视”文章中描述了DNA机械装置的新兴用途。乔治亚理工学院和埃默里分校。 这篇文章预示着一个新的领域,布兰查德称之为“DNA机械技术”,以设计生成,传递和感知纳米级机械力的DNA机器。 Salaita说:“很长一段时间以来,科学家一直擅长制造比人的头发还要小数百倍的微型设备。制造功能性的纳米设备要比其小数千倍,这更具挑战性。但是,使用DNA作为组成部分,可以构建极其复杂的纳米器件,因为DNA部件是自组装的。“ DNA或脱氧核糖核酸以编码和存储遗传信息的形式由四个化学碱基组成:腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C)和胸腺嘧啶(T)。 DNA碱基具有天然的亲和力,可以相互配对 - A与T和C与G配合.DNA的合成链可以与来自噬菌体的天然DNA链结合。通过移动链上的字母序列,研究人员可以通过创建不同形状的方式将DNA链结合在一起。 DNA链的刚度也可以很容易地调整,因此它们可以像一块干意大利面条一样保持笔直,或像弯曲的意大利面一样弯曲和卷曲。 使用DNA作为建筑材料的想法可以追溯到20世纪80年代,当时生物化学家Nadrian Seeman开创了DNA纳米技术。该领域使用链DNA制造纳米级的功能性设备。制作这些精确的三维结构的能力始于一种新奇的绰号DNA折纸,产生了诸如世界的微观地图之类的物体,以及最近有史以来最小的井字游戏。 DNA板。 对新奇物体的研究继续为DNA的机械性质提供新的见解。这些见解推动了制造能够产生,传递和感应机械力的DNA机器的能力。 “如果你将机械设备的这三个主要组件放在一起,你就会开始获得锤子,齿轮和轮子,你可以开始制造纳米机器,”Salaita说。 “DNA机械技术扩大了涉及生物医学和材料科学的研究机会。它就像发现一个新的大陆并开辟新的领域来探索。” 这种装置的潜在用途包括纳米胶囊形式的药物递送装置,当它们到达目标位置时打开,纳米计算机和纳米机器人在纳米级装配线上工作。 基因组学工业用于生物医学研究和诊断的DNA自组装的使用进一步推动了DNA机械技术的发展,使得DNA合成成本低廉且易于获得。 “可能任何人都可以梦想纳米机器的设计并使其成为现实,”Salaita说。 他以创建一把纳米剪刀为例。他说:“您知道您需要两个刚性杆,并且它们需要通过枢轴机构链接。” “通过修补一些开源软件,您可以创建此设计,然后转到计算机上并下达订单以自定义合成您的设计。您将在试管中收到订单。您只需将试管中的内容放入解决方案中,让您的设备自组装,然后使用显微镜观察它是否按照您认为的方式工作。” Salaita的实验室是全球仅有的100个从事DNA机械技术前沿研究的实验室之一。他和布兰查德(Blanchard)开发了世界上最强大的基于DNA的合成马达,最近在《纳米快报》上对此进行了报道。 Salaita研究的重点是绘制和测量细胞的推拉方式,以了解有关人体免疫系统的机械力的更多信息。 Salaita开发了首批用于细胞的DNA测力计,提供了一个分子在活细胞整个表面上施加到另一个分子的机械力的第一张详细视图。绘制此类力图可能有助于诊断和治疗与细胞力学有关的疾病。例如,癌细胞与正常细胞的移动方式不同,目前尚不清楚这种差异是疾病的原因还是结果。 2016年,Salaita使用这些DNA测力计为T细胞(免疫系统的安全卫士)的机械力提供了第一个直接证据。他的实验室展示了T细胞如何使用一种机械的“握手”或拖船来测试它们遇到的细胞是敌还是友。这些机械拖船对于T细胞是否发起免疫反应至关重要。 Salaita解释说:“您的血液包含数百万种不同类型的T细胞,并且每个T细胞都经过进化以检测某种病原体或外来物质。” “ T细胞使用这些机械拖船不断采样整个身体的细胞。它们结合并拉动细胞表面的蛋白质,如果结合牢固,则表明T细胞已发现异物。” Salaita的实验室基于最近在《美国国家科学院院刊》(PNAS)上发表的论文中的这一发现。 Emory化学研究生马荣(Rong Ma)领导的工作完善了DNA测力计的灵敏度。他们不仅能够以轻微的力量检测到这些机械拖船,而且几乎是回形针重量的十亿分之一,它们还可以捕捉到眨眼间短暂拖曳的证据。 该研究对免疫系统所涉及的机械力提供了前所未有的见解。萨拉塔说:“我们发现,除了进化以检测某些外来物质外,T细胞还将对外国特工施加非常短暂的机械拖船。”拖船的频率和持续时间取决于外源物质与T细胞受体的匹配程度。 该结果提供了一种预测T细胞免疫应答强度的工具。 Salaita说:“我们希望该工具最终可以用于微调个别癌症患者的免疫疗法。” “它可能潜在地帮助改造T细胞来治疗特定的癌细胞。” ——文章发布于2019年9月18日