《Place specificity of the click-evoked auditory brainstem response in the bottlenose dolphin (Tursiops truncatus》

  • 来源专题:水声领域信息监测
  • 发布时间:2016-11-14
  • Cochlear place specificity of the auditory brainstem response (ABR) was investigated in five bottlenose dolphins by measuring ABRs to broadband clicks presented simultaneously with masking noise having various high-pass cutoff frequencies. Click and noise stimuli were digitally compensated to account for the transmitting response of the piezoelectric transducers and any multipath propagation effects to achieve “white” or “pink” spectral characteristics. Narrowband evoked responses were derived by sequentially subtracting responses obtained with noise at lower high-pass cutoff frequencies from those obtained with noise having higher cutoff frequencies. The results revealed little contribution to the click-evoked brainstem response from frequency bands below 10 kHz and, in dolphins with full hearing bandwidth, the largest amplitude derived band evoked responses were obtained from the highest frequency bands. Narrowband latencies decreased with increasing frequency and were adequately fit with a power function exhibiting relatively large change in latency with frequency below ∼30 kHz and little change above ∼30 kHz. These data demonstrate that frequency bands below ∼10 kHz do not substantively contribute to the farfield ABR in the bottlenose dolphin when using place-specific approaches such as high-pass subtractive-masking techniques.

相关报告
  • 《The effects of click and masker spectrum on the auditory brainstem response of bottlenose dolphins (Tursiops truncatus》

    • 来源专题:水声领域信息监测
    • 编译者:ioalib
    • 发布时间:2016-11-11
    • Two experiments were performed that investigated the effects of (1) click level and (2) continuous broadband noise on the binaural auditory brainstem response (ABR) of normal-hearing and hearing-impaired bottlenose dolphins (Tursiops truncatus). In addition to spectrally uncompensated clicks and noise, stimuli were digitally compensated to achieve “white” spectra (flat spectral density level) or “pink” spectra (spectral density level rolling off at −3 dB/octave). For experiment 1, in all spectral conditions, ABR peak latencies increased and peak amplitudes decreased with decreasing click level, but interwave intervals changed little. Latency-intensity function (LIF) slopes ranged from −3 to −11 μs/dB. The LIF slopes of ABR peaks evoked by uncompensated clicks were steeper in dolphins with hearing loss. Click level was held constant during experiment 2, and the effect of bilaterally delivered broadband masking noise on the ABR was investigated. Clicks and noise were filtered to create a pink click/noise condition and a white click/noise condition. With increasing levels of masking noise, peak latencies increased (although only P1-P4 white reached significance), peak amplitudes decreased, and interpeak intervals increased (although not significantly). These effects are compared to results reported for terrestrial mammals, and implications for auditory health assessment and biosonar function are discussed.
  • 《Auditory evoked potentials in the auditory system of a beluga whale Delphinapterus leucas to prolonged sound stimuli 》

    • 来源专题:声学研究所所级服务
    • 发布时间:2016-03-16
    • The effects of prolonged (up to 1500 s) sound stimuli (tone pip trains) on evoked potentials (the rate following response, RFR) were investigated in a beluga whale. The stimuli (rhythmic tone pips) were of frequencies of 45, 64, and 90 kHz at levels from 20 to 60 dB above threshold. Two experimental protocols were used: short- and long-duration. For the short-duration protocol, the stimuli were 500-ms-long pip trains that repeated at a rate of 0.4 trains/s. For the long-duration protocol, the stimuli were continuous pip successions lasting up to 1500 s. The RFR amplitude gradually decreased by three to seven times from 10 ms to 1500 s of stimulation. Decrease of response amplitude during stimulation was approximately proportional to initial (at the start of stimulation) response amplitude. Therefore, even for low stimulus level (down to 20 dB above the baseline threshold) the response was never suppressed completely. The RFR amplitude decay that occurred during stimulation could be satisfactorily approximated by a combination of two exponents with time constants of 30−80 ms and 3.1−17.6 s. The role of adaptation in the described effects and the impact of noise on the acoustic orientation of odontocetes are discussed.