《这种核电技术能帮人温暖过冬》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2021-01-14
  • 最近,受冷空气影响,我国南方多地气温骤降,人们对取暖设备的需求急剧增长。

    但和电热暖器、暖风机、踢脚线取暖器等供暖措施相比,一些冬季寒冷潮湿地区的城镇居民也急切盼望着集中供暖。

    从传统发电企业立场出发,燃煤热电厂不再新建,到设计寿命期限的老电厂一律关停,导致北方各地基荷热源缺乏。煤改电、煤改气也需要考虑成本和资源的掣肘。

    如果采用核电小堆(池式堆)供暖,不仅上述问题得以解决,原有的供暖管网继续利用,而且可以腾出大片土地开发利用,具有较高的商业价值。

    那么,池式堆是什么?它怎么实现供暖?

    常压低温池式堆是常压下运行的池式核反应堆,又称为游泳池式核反应堆(简称池式堆)。自20世纪60年代开始,直至现在,美国、加拿大、德国、瑞士、瑞典、法国等许多发达国家都进行了池式堆的持续研究与开发。

    20世纪80年代初,清华大学核研院就利用已建成的池式实验堆(2MWt)进行了核研院生产区与生活区的冬季集中供暖试验,取得成功。后来又推出了NHR壳式低温核供热堆,于1989年建成了5 兆瓦试验堆,并成功运行。

    但在随后的三十多年中,无论是池式堆,还是壳式堆,都一直积极推广,但是一直没有示范工程落地。

    池式堆在常压、低于100℃的参数下运行,可以实现在任何事故工况下堆芯不会裸露,燃料元件不会烧毁,达到“无放射性扩散”的核安全目标,不需要厂外应急。整体而言,该堆型温度低、压力低(常压),技术成熟,系统简单,在极端事故工况下蓄水池容量大,反应堆芯浸泡其中可阻止堆芯融化,保证放射性物质的包容,具有固有安全特征,可直接进入商业应用。

    近年来,在雾霾治理、碳减排的大背景下,核能供暖呼声渐高。核工业领域多个单位都推出了核能供热技术,主要应用是作为城市集中供热的热源,补充和部分替代燃煤锅炉和燃煤的热电联供机组。

    2017年11月28日,中国原子能科学研究院49-2池式堆改造完成,实现冬季供暖。同日,中核集团“燕龙”泳池式低温供热堆在京正式发布,标志我国在核能供热技术领域又向前走了一大步,为探索城市区域清洁供暖提供了又一新的解决路径。

    有业内人士指出,在核能供暖事业推广过程中,还存在着以下问题有待解决:

    一是最大阻力在于地方政府及公众接受度。

    由于对核能知识的匮乏,以及日积月累的恐核心理,公众对任何核设施的心理接受度都较低。提高公众接受度是示范工程实施方案的一部分,需要地方政府积极接受并大力支持,同时配合做厂址周边百姓工作。

    二是行业内技术路线差异大,未能形成合力。

    虽然技术路线丰富,但在目前商业示范堆尚未建成、核能供热推广的初期阶段,科研、设计和市场推广资源严重分散。用搞大型核电的观念、思路和方法搞核能供暖小堆,不仅会让地方政府和用户挑花眼,而且也会增加审批难度,延长审批进度。

    在气候异常概率增加,供暖需求提升的当下,各大核电集团应形成合力,在需求迫切且厂址适合的地区,批量布局十个以上的池式堆核能供暖项目,引领上下游供应商形成标准化设计、标准化制造、标准化施工、标准化运营。

  • 原文来源:https://power.in-en.com/
相关报告
  • 《发酵罐里“酿”出青蒿素 这种技术帮人类实现“造物自由”》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-11-20
    • 有了合成生物技术,用100立方米工业发酵罐生产出的青蒿素,与5万亩农业种植获得的产量相当。   如果我们食用的粮食、肉类、油脂,不需要土地种植和畜牧养殖,就可以摆脱靠天吃饭和土地资源紧张的命运;如果我们使用的汽油、制造各种化工产品的原料,不需要石油、天然气等碳基能源,就不会再担心能源枯竭和环境污染的问题;如果很多珍稀的药物成分,不需要再从植物和动物中提取,就不会担心物种灭绝和过多杀戮……这些看似天方夜谭的事情,正随着合成生物学技术的迅猛发展被逐步实现,未来我们所需的各种产品可能像酿啤酒一样,在工厂车间就能制造出来。   日前科技部批准建设国家合成生物技术创新中心,这将为提升我国合成生物领域企业和产业创新能力提供有力支撑。   创建有特定功能的“人工生物”   合成生物学作为新兴前沿交叉学科之一,早在2004年就被美国《麻省理工·技术评论》选为改变世界的未来十大技术之一。中国科学院天津工业生物技术研究所副所长王钦宏介绍说,合成生物学就是采用工程化设计理念,对生物体进行有目标的设计、改造乃至重新合成,创建出能完成特定功能或被赋予非自然功能的“人工生物”。它是继DNA双螺旋结构发现和基因组测序之后的“第三次生物科学革命”,促进了人类对生命密码从“读”到“写”的质变,使人类克服自然进化的局限,让设计自然为人类服务成为可能。   “合成生物学是在分子水平上对生命系统的重新设计和改造。”王钦宏解释说,这个过程很像IT技术,如果让计算机实现某种功能,需要很多元器件集成起来。基因就相当于具有各种功能的元器件,我们把所需要合成的目标物质的各种基因以工程化的方式设计集成,然后装入底盘细胞(目前便于遗传操控的酿酒酵母和大肠杆菌是常用的底盘细胞),被重新设计的细胞就是合成生物。以生物合成番茄红素为例,我们可以先从番茄中提取番茄红素合成所需要的所有基因,然后把这些基因重新设计组合,再装入“底盘细胞”——大肠杆菌或酿酒酵母中获得合成生物,再以葡萄糖作为原料,通过类似酿造啤酒一样的过程,生产出的番茄红素,与从番茄中提取的番茄红素完全一样。   这个看似简单的过程,涉及到生物学与化学、工程学、计算、生物信息学等多学科的交叉融合,此外还涉及基因组测序、基因化学合成、基因编辑、生物计算与建模、蛋白质结构解析、理性设计与定向进化、合成途径构建与调控等一系列核心技术。   “从2010年首个细胞生命被成功合成,到2019年实现功能性定制细胞器的合成,合成生物学不断取得重大科学突破。”王钦宏介绍说,目前合成生物技术主要应用于信号传导、能量转化、物质合成和分子识别等领域。信号传导可应用于癌症、糖尿病的智能诊疗,灵敏检测出体内的疾病;能量转化可用于人工光合作用,通过重新设计植物中光合作用系统,提高光合作用中植物对能量的吸收转化,使作物生长周期缩短,增加产量;物质合成是通过构建合成细胞工厂,实现化工、材料、能源的绿色制造;分子识别主要应用于环境检测,通过增强分子信号识别能力,提高检测的灵敏度。   颠覆传统产业模式   “传统的化学合成,主要以石油、天然气等碳基能源作为原料,在生产过程中,可能会产生大量二氧化碳和有毒有害物质。而采用合成生物技术,只需要酵母、细菌等做‘底盘’,用来自玉米淀粉的葡萄糖等做原料,就可以合成我们所需的各种物质。”王钦宏进一步介绍,此外还可以使用秸秆等植物纤维作为原料,甚至目前正在研究跳过植物光合作用合成物质的步骤,直接使用二氧化碳作为原料,完成各种生物合成。   “因此,合成生物技术的应用,颠覆了工业、农业、食品、医药等领域传统产业模式,为社会经济问题提供解决方案,创造价值链高端的新经济增长点。”王钦宏说,“目前合成生物技术正快速向实用化、产业化方向发展。”   在农产品方面,使用微生物细胞作为细胞工厂,我国已实现人参皂苷、番茄红素、灯盏花素、天麻素等众多天然产物的人工合成,形成了新的制造模式,减少了对土地的依赖和污染。以天麻素为例,其生物合成成本是植物提取的1/200、化学合成的1/2—1/3,生产效率大幅提升,质量可完全替代化学合成。王钦宏介绍说:“还有像红景天里面的主要成分红景天苷,这种成分只有在生长于海拔4000米以上的红景天中才能提取到。而通过生物合成的方式,在工厂里就可以生产了。”   在石油化工产品方面,我国目前创建了丁二酸、丙氨酸、苹果酸等一批化学品合成的生物制造路线,颠覆了对石油、天然气等传统资源的依赖与高污染的传统化工过程。“以丙氨酸为例,我国在国际上率先建成万吨级L-丙氨酸生物合成路线,相比化工合成路线,生产成本降低50%,废水排放和能耗分别降低90%、40%。”王钦宏介绍说。   在化学原料药方面,实现了羟脯氨酸、肌醇、左旋多巴、维生素B12等产品的绿色新工艺。以肌醇为例,合成生物工艺较传统工艺高磷废水的排放减少90%以上,成本降低50%以上。   在传统产业改造方面,应用生物纺织、生物造纸、生物脱胶等绿色生物工艺,实现了二氧化碳减排,减少污水排放,促进传统产业走出资源环境制约。   发展迅猛但亟须突破瓶颈   虽然目前国际合成生物学研究飞速发展,合成生物学的底层技术、生物体系构建、实用性技术已经发生了革命性变化,但是合成生物技术要想实现产业化,降低成本、提高与传统生产模式的竞争力非常重要。“比如美国合成生物学家设计构建了能够生产抗疟药物青蒿素的人工酵母细胞,其技术能力可实现100立方米工业发酵罐的生产量与5万亩农业种植获得的产量相当,使抗疟疾药物成本下降90%,堪称合成生物技术的重大应用典范。”王钦宏说。   “我国在合成生物领域起步略晚,但是进展很快,目前我国合成生物学研究,无论是在基础科研论文发表量,还是技术专利申请量方面,均已在国际上处于第二位。”王钦宏介绍说,前不久在天津召开了两个合成生物学领域的盛会——“2019代谢工程国际会议”和“第十届中国工业生物技术发展高峰论坛暨第四届生物工业投资大会”。在会上,代谢工程学科创始人之一的延斯·尼尔森表示,中国正在全球代谢工程领域发挥越来越重要的作用。与此同时,还发布了《中国工业生物技术白皮书2019》,全面总结了中国工业生物技术近年来在基础研究、应用研究、技术转化与产业发展等方面取得的进展和成就。   “但与美国相比,我国在基础理论、核心体系、产业技术等方面尚存在不小的差距。”王钦宏坦言,这主要表现在原创标志性工作较少,还没有出现类似于“人造生命”、青蒿素合成式的重大突破;合成生物设计创制的技术方法体系不完善,元件标准化、通用性方面有差距,导致核心技术和关键设备对国外依存度高;从基础研究到应用技术创新方面,需要更好地衔接,需要从需求出发凝练核心科学问题,推进合成生物学技术颠覆式创新与工程化应用,支撑生物产业发展。   目前,我国在自主细胞工厂创制的机制与分子基础方面,在DNA合成、生物元件标准化、基因编辑系统、合成生物理性设计等底层核心技术构建方面,在高通量、自动化的系统技术平台建设方面还存在不足,亟须突破技术瓶颈,占领国际竞争制高点。
  • 《硅藻—太阳能电池技术突破的新途径》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-08-01
    • 硅藻,一种繁衍十分迅速的硅藻类植物,它们的无定型二氧化硅壳体以及独特的立体结构,可以使光在细胞内进行充分的光合作用。在人类发明硅基太阳能电池之前,自然界中的硅藻早已开始利用二氧化硅来收集太阳能。近年来,众多国内外研究人员就希望利用硅藻的光学特性来推动太阳能技术取得突破。 硅藻特殊结构发挥重要作用 藻类有200个门,10万多个种,大多数生活在海水中,能利用太阳能进行光合作用。藻类是世界上光能利用最成功、光能利用率最高的有机体,其能较少的反射太阳光,并通过网格毛孔捕获太阳能。 藻类高效利用阳光的最大秘密在于其外壳,其中单细胞的硅藻外壳是最佳模型。硅藻外壳是由结构极为复杂精密的二氧化硅组成10~50nm 的六边形微孔排列形成丝网状结构,复杂的结构能使射进的光线无法逃逸,这种纹饰繁密的藻壳不仅增强了硅藻的硬度和强度,使其具有能悬浮起来的机械性,而且提高了其运输营养物质和吸附、附着的生理功能,且阻止了有害物质进入,增强了光吸收率。 研究人员在很多具有分级多孔结构的生物材料中发现了天然的光子晶体效应,硅藻的特殊结构让它成为一种良好的光子晶体,能够大大提升光捕获效率,这种特性让硅藻在太阳能电池中发挥了重要的作用。 硅藻天然材料降低所需成本 硅藻这种微小生物对有机太阳能电池(相较于传统太阳能技术,这种技术成本更低)的设计有着独特的价值。因为设计这些电池的一个挑战是,它们需要非常薄的活性层(只有100到300纳米),而这限制了它们将光能转化为电能的效率。 解决这个问题的方案便是嵌入能够吸收与分散光的纳米结构来提高吸收水平,但这对于大规模生产来说太贵了。而这恰恰就是硅藻能够起作用的地方。经过数十亿年的适应性进化,它们已经尽可能优化了吸收光的能力。而且它们是自然界中最常见的浮游植物,这就意味着它们很便宜。硅藻在世界各地的海洋和淡水中非常普遍,因而成本非常低,所以它们成为改善光伏发电的理想选择。 硅藻有效提高能量转换效率 藻类外壳利用阳光的构筑是未来太阳能电池原材料和模型构筑的最佳供体。有机光伏太阳能电池具有由有机聚合物制成的活性层,这意味着它们比常规太阳能电池便宜,但它们的转换效率不太高,主要因为其有源层非常薄,通常需要小于300纳米,因此这限制了转换效率。 而利用硅藻的光学特性,将硅藻加入到染料敏化太阳能电池(是以低成本的纳米二氧化钛和光敏染料为主要原料,模拟自然界中植物利用太阳能进行光合作用,将太阳能转化为电能)的二氧化钛薄层后,能量转换效率是原转换效率的1.3-1.4倍(而把硅藻壳体加入到二氧化钛中烧结形成电池阳极,增加了光捕获和在电池中的散射性能,传统二氧化钛覆膜3遍的转换效率为3.8%,加入了硅藻壳体的二氧化钛转换效率可以达到5.26%)。 硅藻对于人类来说就是一个未开发的宝藏,除了在太阳能光伏材料上能有效的突破目前的能量转换效率,而且在其他领域还有着相同重要的应用。例如硅藻细胞代谢产生的多糖、蛋白质、色素、油脂等,使其在食品、医药、基因工程、液体燃料等多个领域都有极大的开发前景。 通过硅藻壳生产的微纳米二氧化硅是自然界独一无二、纯度极高的生物无机材料,也是最佳微纳生物平台材料,当然硅藻在养殖过程中也能吸收二氧化碳释放大量氧气,对环境有着巨大的贡献。