《量子纠缠或让“绝热量子计算机”有了实现途径》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-11-12
  • 相对经典计算机而言,基于量子力学的量子计算机,越来越成为科学家关注的热点。如何通过量子计算实现量子霸权,也成为理论研究者建模的重点对象。近日,国际物理学期刊《物理学评论快报》上,发表的一篇名为《量子可积条件下的量子退火和热化》的论文,提出一种引入了量子纠缠机制、严格可解的绝热量子计算模型。该模型或为量子霸权的实现,提供一种可能的方案。

    截至目前,量子计算的实现方案有多种,包括量子线路、绝热量子计算、量子随机行走、拓扑量子计算等模型。这些模型使量子计算的研究取得了较大进展。不过,普适的容错量子计算仍超出了现阶段技术能力,阻碍了量子霸权的实现。因此,尽管加拿大D-Wave公司已造出了世界上首台商用量子计算机,但其具体实现方案和物理模型仍有较大争议。如,很多研究者认为该系统的计算过程,并未真正实现量子加速,其结果与经典物理模型所获结果无异。

    湖南大学物理与微电子科学学院教授李福祥,与美国洛斯阿拉莫斯国家实验室教授尼古拉·辛涅特西、韦恩州立大学教授弗拉迪米·尔切尔尼亚克共同合作完成的这一研究,则提出了一种新的绝热量子计算模型。该模型引入了“量子纠缠态”,通过采用一个满足量子可积条件的新模型,证明了在绝热量子计算中,当把初始状态制备成量子纠缠态时,可在保持一定出错率的情况下,大幅提高量子计算速度。这一结论为绝热量子计算机的制造提供了理论依据,也为新方案的实验设计提供了思路和方向。

  • 原文来源:http://www.stdaily.com/index/kejixinwen/2018-11/12/content_729929.shtml
相关报告
  • 《丹麦哥本哈根大学首次实现两个量子光源的量子纠缠》

    • 来源专题:集成电路
    • 编译者:李衍
    • 发布时间:2023-01-31
    • 多年来,研究人员一直致力于开发稳定的量子光源,并实现量子力学纠缠,也就是两个量子光源可远距离地立刻相互影响。纠缠是量子网络的基础,也是开发高效量子计算机的核心。然而,从控制一个量子光源到控制两个以上量子光源,多个光学发射器的辐射耦合一直是量子光学和原子物理学中的一个长期挑战。因为光源对外界的“噪音”非常敏感,因此很难复制。 在多年研究的基础上,近期丹麦哥本哈根大学尼尔斯·玻尔研究所的研究团队和德国波鸿鲁尔大学的研究人员合作,成功创造出两个相同的量子光源并开发出先进的纳米芯片,首次对两个光源进行精确控制并实现了量子力学纠缠[1]。 该最新研究进展对量子硬件的突破性应用至关重要,将促进量子技术发展到更高水平,是计算机、加密和互联网加速“量子化”的关键一步,将为量子技术的商业利用打开大门。 [1] Alexey Tiranov, Vasiliki Angelopoulou, Cornelis Jacobus Van Diepen, et al. Collective super- and subradiant dynamics between distant optical quantum emitters [J]. SCIENCE, 2023, 379 (6630):389-393. https://www.science.org/doi/10.1126/science.ade9324
  • 《量子纠缠的矛与盾-量子计算机可否破解量子加密信息》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-06-19
    • 信息的可理解性在于其关联性,就像古代人完全无法想像现代人的生活方式,就算是现在非洲土著也不能理解现代科技产品。没有各种知识进行关联,一条信息,也不能产生作用。而密码的就是打破信息的关联性,使其只对密码具有关联性。通过加密,由真实信息变成无关联信息,解密则是把无关联信息变成关联信息。 今天翻看科技新闻,看到了潘建伟团队发表《基于纠缠的千公里级安全量子加密》的论文,在量子密钥领域,潘建伟可以算得上最为知名的科学家,量子密钥被一些人认为是最安全的通信保密方法,可以称其为密码界的“最强之盾“也不为过。 而同样的利用量子纠缠研发的量子计算机,号称可以在一秒内破解全球所有密码(50量子bit),从这一方面来说,量子计算机又可以称为密码界的“最强之矛”。 同样是基于量子纠缠理论这生的两种应用,“最强之矛”和“最强之盾”到底谁更强? 从信息学的角度来看,无疑是量子计算机更具有价值,它的做用在于可以创造更多有价值的信息。破解密码只是其中的一个方面。它的信息集合产生的干涉更多。 而量子密钥的作用只有一个就是安全保密。从密码学的角度来说,一条密码的信息量越大,结构越复杂,则产生的加密信息越难破解。而对于量子计算机来说,穷举法,就是其无敌的手段。 密码结构再繁琐,生成的加密信息再复杂,其本质不变,就是信息的关联性不变。关联性包含了信息与信息集合体的配合,信息的关联信息集合(如密码本)。加密信息的量越大,其规律性越高,越好破解。量子密钥则是一种随机密码,对信息进行小量的分割,并应用不同的密钥进行加密解密。看起来似乎也是无懈可击,但是对于碎片化的信息关联,还是不能脱出其整体关联性,即最终信息必然是有关联信息。 下面是两个例子。 计算机的二进制信息只有01,看起来如果生成的加密信息不可能被破解。那么,通过量子计算机,理论上可以生成任意的虚拟计算进去运行这个代码。通过虚拟任意的一种程序来运行这条信息。它就不是不可破解的。 使用声音(如《风语者》)来传递信息。这个信息传递的信息量越大,关联的信息量越多,被破解的可能性越大,最终就是可以被破解。