《Cell Host & Micro:鉴别出“共有”靶点或有望开发抵御HIV感染的新型疫苗策略》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-06-12
  • 日前,一项刊登在国际杂志Cell Host & Microbe上题为“Multi-Donor Longitudinal Antibody Repertoire Sequencing Reveals the Existence of Public Antibody Clonotypes in HIV-1 Infection”的研究报告中,来自范德堡大学的科学家们通过研究阐明了攻击HIV的公共靶点,相关研究或为后期科学家们开发治疗HIV感染的新型疗法提供新的希望和思路。

    个体机体能够产生特殊类型的抗体来对HIV感染反应,特殊抗体的多样性常常阻碍了研究人员开发治疗HIV感染的疫苗;HIV能够快速改变其外膜蛋白来躲避机体防御系统的检测。

    如今,研究者Ivelin Georgiev及其同事在被HIV感染的多名个体机体中鉴别出了其共有的抗体序列,这或许科学家们后期开发出新型疫苗来有效抑制HIV的感染和扩散提供了一定研究基础。

    利用复杂的基因扩增和测序技术,研究人员对特殊的抗体库或全范围的抗体进行了深度的序列分析,这些抗体来自于南非艾滋病研究中心8名HIV感染者供体所捐献的血液样本。最后研究者表示,这项研究中,我们在多名HIV感染个体中鉴别出了多个共有或公共的HIV活性抗体序列,这些抗体序列或能帮助我们后期开发治疗HIV感染和扩散的有效疫苗策略。

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S1931312818302282
相关报告
  • 《Cell Rep:mRNA疫苗技术或有望帮助开发新型HIV疫苗》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-03-28
    • 用脂质纳米颗粒(mRNA-LNP)中核苷修饰的mRNAs来作为COVID-19的疫苗或能成功预示疫苗开发的新时代,对于HIV-1而言,多价包膜(EnV)三聚体蛋白纳米颗粒与单独的三聚体相比,其或能作为激发广泛中和性抗体(bnAb)B细胞系的重要免疫原,然而携带mRNAs的复杂多价纳米颗粒免疫原的成功表现尚未实现。近日,一篇发表在国际杂志Cell Reports上题为“mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice”的研究报告中,来自杜克大学医学院等机构的科学家们通过研究利用一种在COVID-19疫苗中所使用的mRNA技术开发了一种成功运输潜在HIV疫苗的方法。 文章中,研究人员描述了这种复杂疫苗开发过程中的重要进展,该方法或能在刺激HIV抗体的脂质纳米颗粒中使用mRNAs来发挥作用;医学博士Barton Haynes说道,如今我们拥有一种实用的平台来产生复杂的HIV疫苗,这种mRNA技术在COVID-19治疗和预防上非常成功,而且此前研究人员发现其或许也能有效应用于寨卡病毒疫苗的开发,但HIV要复杂的多,但尽管如此,这仍然是科学家们向前迈出的重要一步。 研究者Barton Haynes表示,mRNAs能利用遗传物质来促进免疫细胞识别靶向性病原体,其或许能编码对于HIV疫苗开发非常重要的复杂抗原,由于引发AIDS的HIV病毒会迅速突变,但在不断变化中期外膜中的某些位点会保持不变,一种成功的疫苗需要针对这些位点的完美结构的蛋白来出发宿主机体的免疫反应,而这是过去疫苗开发技术所面临的技术障碍。为此,本文研究中,研究人员开发了一种能编码获得关键突变的mRNA疫苗,以及能中和多种不同HIV毒株的单克隆抗体。 研究者认为,能帮助减缓COVID-19扩散并降低引起所导致的死亡的新型mRNA疫苗平台或许还能保护机体免受HIV的感染,这些卓越的研究成果或许标志着mRNA研究新时代的到来,对于改善人类的健康至关重要。 研究者Haynes说道,大规模地制造复杂的纳米颗粒蛋白免疫原或许给科学家们带来了巨大的挑战,因此我们倍感鼓舞的是,使用mRNA或许提高了这种复杂的免疫策略在逻辑上实现并可能具有一定成本效益的可能性。综上,本文研究结果表明,mRNA-LNP能帮助编码复杂的免疫原,其或许能作为设计种系靶向性和顺序增强免疫原从而开发新型HIV-1疫苗的基础。
  • 《PNAS & JBC解读!科学家有望开发出治疗SARS-CoV-2和HIV感染的新型有效疫苗!》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-12-21
    • 近日,发表在国际杂志Proceedings of the National Academy of Sciences上题为“A facile method of mapping HIV-1 neutralizing epitopes using chemically masked cysteines and deep sequencing”和国际杂志Journal of Biological Chemistry上题为“Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment”的两篇研究报告中,来自印度科学理工学院等机构的科学家们通过研究开发出了能有效抵御SARS-CoV-2和HIV的新型有效的疫苗策略。此前研究人员报告了设计了一种耐热的COVID-19候选疫苗,以及一种快速的方法,该方法能识别被抗体所靶向作用的HIV包膜蛋白上的特殊区域,而这种抗体则能够帮助科学家们设计出有效的疫苗。 COVID-19候选疫苗包含有称之为受体结合结构域(RBD)的SARS-CoV-2的刺突蛋白的一部分,该区域能帮助病毒吸附到宿主细胞上,当研究人员在豚鼠模型体内进行测试时,他们发现,候选疫苗能够引起宿主产生强烈的免疫反应。令人惊讶的是,这种候选疫苗还能在37度的温度下保持稳定一个月,而冻干的候选疫苗也能够对高达100度的温度耐受;这或许就使得疫苗能够便于储存和运输,而不需要昂贵的冷链设备进行运输就能在偏远地区进行大规模的人群接种。大多数的疫苗需要在2-8度的环境中或更低的温度下储存以免会失去疫苗的作用效力。与诸如mRNA疫苗等新型疫苗类型相比,制作基于蛋白质的疫苗在印度能够很容易扩大规模,因为印度的疫苗制造商们已经制作了几十年类似的疫苗了。 目前研究人员正在研究的候选疫苗还与其它许多正在研发的COVID-19疫苗之间有一个区别,其仅会利用RBD的特定部位,即一串200个氨基酸的序列,而不是整个刺突蛋白。研究人员通过质粒将编码该部分的基因插入到了哺乳动物细胞中,随后细胞就会制造出RBD部分的拷贝,研究者发现,RBD的配方在豚鼠体内引发免疫反应方面与刺突蛋白一样优秀,而且其在高温下也稳定得多,完整的刺突蛋白在50度以上的温度下会很快失去活性。研究者Varadarajan说道,目前我们需要项目资助来将相关研究结果推向临床研究阶段,其中就包括对大鼠进行的安全性和毒理性研究,以及在人体测试之前进行的工艺开发和临床试验,这些研究或许会花费大约10亿卢比。 在第二项研究中,研究人员重点对HIV病毒进行了相关研究,研究人员旨在寻找确定能被中和性抗体所靶向作用的HIV包膜蛋白的关键部位,这些抗体能够阻断病毒进入细胞,而且能很好地对其标记从而被宿主机体其它免疫细胞所发现。基于这些区域的额疫苗或许就能够诱导宿主机体产生更好的免疫反应。为了绘制该区域的图谱,研究人员使用X射线晶体衍射学技术和低温电镜技术,但这些方法耗时、复杂且昂贵,因此研究人员就想寻找其它方法最终得出一种简便但有效的解决方案。 首先他们对病毒进行突变以便称之为半胱氨酸的氨基酸能够在包膜蛋白的几个地方出现,随后研究人员加入了一种化学标签粘附在半胱氨酸分子上,最后再利用中和性抗体来靶向作用病毒。如果这些抗体因为被半胱氨酸标签所阻断而无法与病毒上的关键位点结合的话,那么病毒就会存活并引起感染,通过对存活突变体病毒中的基因进行测序,研究人员就能够识别出这些位点。 最后研究者表示,这是一种快速弄清楚抗体结合位置的方法,其对于疫苗设计非常有用,同时还能够帮助检测不同人群机体中的血清样本如何对相同的候选疫苗或病毒产生反应,从原则上来讲,研究人员还能将这种方法进行修饰以适应于任何病毒,当然这就包括SARS-CoV-2。