《石墨烯基纳米材料的抗菌性能。》

  • 来源专题:实验室生物安全
  • 编译者: 苑晓梅
  • 发布时间:2019-07-11
  • 细菌介导的感染可能引起各种急性或慢性疾病,并且由于其过度使用或滥用,致病细菌中的抗生素抗性已成为全世界的严重健康问题。 用新颖有效的替代品替代现有的抗菌剂是缓解这一问题的直接需求。 基于石墨烯的材料经过精心研究,因为它们对多种细菌具有显着的杀菌活性。

  • 原文来源:https://www.ncbi.nlm.nih.gov/pubmed/31086043
相关报告
  • 《《先进材料》国家纳米科学中心专题综述:抗菌碳纳米材料的新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-09
    • 国家纳米科学中心的宫建茹课题组在国际知名期刊Advanced Materials上发表了抗菌碳纳米材料的专题综述“Antibacterial Carbon-Based Nanomaterials”(Adv. Mater. 2018, 1804838),系统地介绍了该研究方向近年来的重要进展。 目前,由于细菌耐药性的广泛出现和迅速传播,现有的可对抗耐药性细菌的抗生素种类极其有限,新型抗生素的开发进度缓慢,细菌感染再次被列为影响全球人类健康的重要因素之一。与传统的抗生素不同,纳米材料具有较强的跨膜能力、抑制外排泵的功能和不易诱发细菌耐药性的特点,有望成为一种新型抗生素替代品。其中,碳纳米材料具有高效的抗菌活性、良好的生物相容性和环境友好等特征,展现出巨大的抗菌应用潜力。据此,该综述系统介绍了碳纳米材料的重要理化性质,主要抗菌机制,其理化因素与抗菌机理的密切关联,以及发展抗菌碳纳米材料的挑战和前景。 碳纳米材料的主要理化性质及其抗菌机制 碳纳米材料能够通过多种机制实现抗菌或杀菌作用,其中包括:细菌细胞壁/细胞膜的机械性损伤、细菌的氧化应激(活性氧依赖和活性氧不依赖两种)、光热和光催化效应(如利用具有良好光催化性能的氮化碳纳米材料,Nano Lett. 2018, 18, 5954)、脂质抽提、细菌代谢抑制、包裹隔离及其协同作用。此外,这些作用机制和碳纳米材料的理化性质密切相关,如碳纳米材料的维度决定了与细菌的作用方式,进而可能影响其主要的抗菌作用机制。文章讨论了零维的富勒烯、纳米金刚石、碳点和石墨烯量子点,一维的单壁碳管和多壁碳管,二维的碳化氮、石墨烯及其衍生物的抗菌活性和抗菌机制。除维度外,碳纳米材料的尺寸、形状、片层数及表面功能化等方面的理化性质也与其抗菌活性息息相关。例如,石墨烯量子点经不同手性氨基酸功能化后表现出明显不同的抗菌活性。研究发现,D-型谷氨酸修饰的石墨烯量子点能够同细菌细胞壁合成中所必需的MurD连接酶高效结合,通过改变该酶的结构影响其酶活性,从而导致细菌细胞壁合成受阻,以达到抗菌目的;相比之下,L-型谷氨酸修饰的石墨烯量子点与MurD结合力较弱,不会对MurD的蛋白结构和酶活性造成影响,几乎没有明显的抗菌活性。两种手性石墨烯量子点和MurD结合作用的分子动力学理论分析结果表明D-型谷氨酸修饰的石墨烯量子点与MurD之间的范德华力和氢键作用显著强于L-型谷氨酸修饰的石墨烯量子点,因此导致抗菌活性的差异(Adv. Healthcare Mater. 2017, 6, 1601011)。 手性石墨烯量子点的抗菌活性和抗菌机制 虽然目前发现了大量的抗菌碳纳米材料,但是在将其转化到实际应用的过程中仍面临诸多问题:大规模制备方法的匮乏,材料在细菌中的定位不明确(可能会对抗菌机制的研究造成阻碍),大多数材料的选择性抗菌活性不好。该课题组的前期研究发现,氮掺杂石墨烯量子点具有优异的双光子荧光性能(Nano Lett. 2013, 13, 2436),动物水平的毒理学研究表明该材料具有良好的生物相容性(Toxicol. Res. 2015, 4, 270)。借助双光子荧光等技术,能更准确地获得碳纳米材料的细菌定位信息,有助于抗菌机制的分析。此外,将氮掺杂石墨烯量子点和传统的光敏剂结合可实现双光子光动力学反应(Chem. Commun. 2018, 54, 715),产生活性氧可用于抗菌。虽然抗菌碳纳米材料的发展面临种种问题与挑战,通过借鉴碳纳米材料在其它领域尤其是材料合成和生物医学领域积累的科研成果,碳纳米材料在抗菌应用方面存在着广阔的发展前景与实际应用价值。
  • 《石墨烯注入碳基纳米材料用于耐用电池》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-07-02
    • 布朗大学的一个研究小组发现了一种方法,可以将用于制造固态锂离子电池的陶瓷材料的韧性提高一倍。《Matter》杂志描述的这一策略可能有助于将固态电池推向大众市场。 “人们对用陶瓷材料取代现有电池中的电解液非常感兴趣,因为它们更安全,而且能提供更高的能量密度,”布朗工程学院的博士后研究员、这项研究的第一作者Christos Athanasiou说。到目前为止,对固体电解质的研究主要集中在优化它们的化学性质上。在这项工作中,我们将重点放在机械性能上,希望能使它们更安全、更实用、更广泛地使用。” 电解液是电池正极和负极之间的屏障,锂离子在充电或放电时通过电解液流动。液态电解质工作得很好——它们被发现存在于今天使用的大多数电池中——但它们有一些问题。在大电流下,电解液内部会形成微小的锂金属丝,从而导致电池短路。由于液体电解质也是高度易燃的,这些短裤可能导致火灾。 固体陶瓷电解质是不易燃的,有证据表明它们可以防止锂丝的形成,而锂丝可以使电池在更高的电流下工作。然而,陶瓷是高脆性材料,在制造和使用过程中可能会断裂。 在这项新研究中,研究人员想知道,在陶瓷中注入石墨烯——一种超强碳基纳米材料——能否提高材料的断裂韧性(一种材料承受开裂而不崩解的能力),同时保持电解质功能所需的电子特性。 阿萨纳苏与布朗大学工程学教授布莱恩·谢尔登和尼廷·帕杜尔合作,他们多年来一直在使用纳米材料来加固用于航空航天工业的陶瓷。在这项工作中,研究人员制造了氧化石墨烯的微小血小板,将其与一种叫做LATP的陶瓷粉末混合,然后将混合物加热以形成一种陶瓷-石墨烯复合材料。 对复合材料的力学测试表明,与单独使用陶瓷相比,复合材料的韧性增加了两倍以上。“发生的情况是,当材料开始开裂时,石墨烯血小板将破裂的表面粘合在一起,因此需要更多的能量来维持裂纹的运行,”Athanasiou说。 实验还表明,石墨烯不会影响材料的电学性能。关键是要确保在陶瓷中加入适量的石墨烯。而石墨烯过少则无法达到增韧效果。过多会导致材料导电,这在电解质中是不需要的。 “你希望电解质能传导离子,而不是电,”帕图尔说。“石墨烯是一种良好的导电体,因此人们可能会认为在电解液中加入导体是在搬起石头砸自己的脚。”但如果我们将浓度保持在足够低的水平,就可以阻止石墨烯导电,同时我们仍能获得结构上的好处。” 综合来看,这些结果表明,纳米复合材料可以提供一条道路,使力学性能更安全的固体电解质用于日常应用。该小组计划继续改进这种材料,尝试石墨烯以外的纳米材料和不同类型的陶瓷电解质。 “据我们所知,这是迄今为止所制造的最坚硬的固态电解质,”Sheldon说。“我认为,我们所展示的是,在电池应用中使用这些复合材料有很大的前景。”