《Blue Phosphorescent Organic Light-Emitting Diodes Using an Exciplex Forming Co-host with the External Quantum Efficiency of Theoretical Limit》

  • 来源专题:绿色印刷—OLED
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • A high-efficiency blue-emitting organic light-emitting diode (OLED) approaching theoretical efficiency using an exciplex-forming co-host composed of N,N′-dicarbazolyl-3,5-benzene (mCP) and bis-4,6-(3,5-di-3-pyridylphenyl)- 2-methylpyrimidine (B3PYMPM) is fabricated. Iridium(III)bis[(4,6-difluorophenyl)- pyridinato-N,C2′]picolinate (FIrpic) is used as the emitter, which turns out to have a preferred horizontal dipole orientation in the emitting layer. The OLED shows a maximum external quantum efficiency of 29.5% (a maximum current efficiency of 62.2 cd A−1), which is in perfect agreement with the theoretical prediction.

  • 原文来源:;http://onlinelibrary.wiley.com/doi/10.1002/adma.201400955/abstract
相关报告
  • 《Low-Driving-Voltage Blue Phosphorescent Organic Light-Emitting Devices with External Quantum Efficiency of 30%》

    • 来源专题:绿色印刷—OLED
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract image A homoleptic iridium (iii) tris(pheny­limidazolinate) complex realizes a high EQE of 30%, a low turn-on voltage of 2.5 V, and a small efficiency roll-off in a blue organic light-emitting device (OLED). This device also shows high power efficiencies over 75 lm W−1 and an ideal light distribution pattern at 100 cd m−2.
  • 《Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency》

    • 来源专题:绿色印刷—LED
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • The combination of both very high brightness and deep blue emission from phosphorescent organic light-emitting diodes (PHOLED) is required for both display and lighting applications, yet so far has not been reported. A source of this difficulty is the absence of electron/exciton blocking layers (EBL) that are compatible with the high triplet energy of the deep blue dopant and the high frontier orbital energies of hosts needed to transport charge. Here, we show that N-heterocyclic carbene (NHC) Ir(III) complexes can serve as both deep blue emitters and efficient hole-conducting EBLs. The NHC EBLs enable very high brightness (>7,800 cd m−2) operation, while achieving deep blue emission with colour coordinates of [0.16, 0.09], suitable for most demanding display applications. We find that both the facial and the meridional isomers of the dopant have high efficiencies that arise from the unusual properties of the NHC ligand—that is, the complexes possess a strong metal–ligand bond that destabilizes the non-radiative metal-centred ligand-field states. Our results represent an advance in blue-emitting PHOLED architectures and materials combinations that meet the requirements of many critical illumination applications.