《美国思科公司发现3D打印的“克隆指纹”能以80%成功率通过生物识别系统》

  • 来源专题:中国科学院文献情报生命健康领域集成服务门户
  • 编译者: 王跃
  • 发布时间:2020-05-04
  • 4月14日,美国思科公司发现3D打印的“克隆指纹”能以80%成功率通过生物识别系统,从而解锁智能手机、笔记本电脑等设备。研究人员通过使用手指创建模具、从指纹读取器获取图像、拍摄玻璃等透明材质表面上的指纹照片等三种方式收集指纹,然后使用3D打印机通过多种材料(如硅和织物胶)创建了约50个假指纹模具,再利用这些假指纹模具在苹果、三星和华为制造的智能手机、Windows和Mac系统的笔记本电脑、USB设备的指纹读取器和智能锁等设备上进行测试,发现其能以80%成功率通过这些设备的生物识别系统。

  • 原文来源:;https://debuglies.com/2020/04/11/3d-printing-could-be-used-to-clone-fingerprints-and-bypass-biometric-security-of-notable-manufacturers/
相关报告
  • 《美国研发新型3D打印工艺》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-09-11
    • 增材制造或称3D打印会采用数字化制造工艺,生产既轻又坚固的部件,而且无需采用特殊模具进行生产。在过去十年间,3D打印以每年超20%的增长率快速增长,用金属和工程聚合物打印出飞机部件、汽车部件、医疗和牙科植入物等各种部件。其中,选择性激光烧结(SLS)是最常用的制造工艺之一,可以利用激光将微米大小的材料粉末打印出部件:激光将颗粒加热至一定的温度,再熔合成固体。 据外媒报道,美国哥伦比亚大学工程和应用科学学院(Columbia University School of Engineering and Applied Science)创新(机械工程)系James和Sally Scapa教授Hod Lipson表示:“增材制造是经济恢复的关键,但问题是,SLS技术一次只能打印一种材料:整个部件都由一种粉末制成。那么,有多少产品是仅由一种材料制成的呢?这一点限制了该工艺的发展。” 为了解决这一挑战,Lipson与其手下的博士生John Whitehead利用在机器人技术方面的专业知识研发了一种新方法以克服SLS技术的局限性。通过将激光倒置,让其指向上方,研究人员研发了一种方法,让SLS技术可以同时使用多种材料生产部件。 一般而言,选择性激光烧结(SLS)技术会采用一个指向下方加热打印床的激光,将材料颗粒熔合在一起。一个固体打印物就是由下至上打印而成的,打印机上均匀地放一层粉末,并利用激光选择性地熔合这一层粉末中的一些材料。然后,打印机在第一层上沉积第二层粉末,激光将新材料熔合到前一层的材料上,持续这一过程直到完成部件。 如果在打印时只采用一种材料,SLS工艺会效果很好。但是在单次打印中采用多种材料极具挑战性,因为一旦粉末层沉积在打印床上,就不能被移开,或者被另一种粉末取代。 此外,在标准的打印机中,因为每一层放置的材料都是一样的,未熔合在一起的材料会让人看不清正在打印的物体,直到打印循环结束移开完成打印的部件才能看到。这也意味着,在打印完成之前,并不一定能够发现打印失败了,从而会浪费时间和金钱。 研究人员决定找到一种完全不需要粉末打印床的方法。他们设置了多个透明的玻璃板,在每个板上都涂有一层薄薄的不同类型的塑料粉末。然后,将一个打印平台放在其中一种粉末表面上方,引导一束激光从底面向上穿过底部。该工艺根据虚拟蓝图,可以选择性地将打印平台上的一些粉末以预先编程好的模式烧结。然后,该平台被熔融材料抬高,移到另一个涂有不同粉末的平板上,再重复这一过程。整个工艺可以让不同的材料要么合并成一层,要么堆叠在一起。与此同时,旧的、用过的平板又不断被填满粉末。 研究人员展示了其打印的产品原型,用平均层高43.6微米的热塑性聚氨酯(TPU)粉末打造了一个50层厚、2.18毫米的样品,还用平均层高71微米的多材料尼龙和TPU打印出部件。此类部件既证明了该工艺的可行性,也证明了在烧结过程中通过向悬挂部件挤压平板,可以打造出更坚固、更致密的材料。 现在,研究人员还在利用金属粉末和树脂进行实验,以便直接制成比用SLS系统制成的种类更多的机械、电气和化学部件。
  • 《美国国家标准与技术研究院(NIST)研究人员在3D打印铝合金中发现了称为准晶体的罕见原子结构,可增强3D打印金属的强度》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2025-04-15
    • Andrew Iams在电子显微镜下观察时看到了一些奇怪的东西。当时,他正在原子层面上检查一块新型铝合金的碎片,试图找到其强度的关键,这时他注意到原子排列成一种极为特殊的模式。“就在那时,我开始感到兴奋,”Iams表示,他是一名材料研究工程师,“因为我觉得自己可能正在观察一种准晶体。” 他不仅在该铝合金中发现了准晶体,而且他和他在美国国家标准与技术研究院(NIST)的同事们还发现,这些准晶体也使其更加坚固。他们将这一发现发表在了《Journal of Alloys and Compounds》上(DOI:10.1016/j.jallcom.2025.180281)。 这种合金是在金属3D打印的极端条件下形成的,这是一种制造金属零件的新方法。在原子层面上理解这种铝的特性,将使制造全新类别的3D打印零件成为可能,例如飞机部件、热交换器和汽车底盘。这也将为研究使用准晶体来增强强度的新型铝合金开辟道路。 准晶体是什么? 准晶体与普通晶体相似,但有几个关键区别。 传统晶体是由原子或分子以重复模式排列而成的任何固体。例如,食盐是一种常见的晶体。食盐的原子连接形成立方体,这些微小的立方体又连接形成足够大的立方体,可以用肉眼看到。 原子形成重复晶体图案的方式只有230种。准晶体不符合其中的任何一种。它们独特的形状使它们能够形成填充空间的图案,但永远不会重复。 准晶体是由以色列理工学院的材料科学家Dan Shechtman在20世纪80年代于NIST休假期间发现的。当时许多科学家认为他的研究存在缺陷,因为他发现的新晶体形状不符合晶体的正常规则。但通过仔细研究,谢赫特曼毫无疑问地证明了这种新型晶体的存在,彻底改变了晶体学的科学,并赢得了2011年的诺贝尔化学奖。 几十年后,在与Shechtman同一栋楼工作的Andrew Iams在3D打印铝中发现了他自己的准晶体。 金属3D打印如何工作? 金属3D打印有几种不同的方法,但最常见的一种称为“粉末床熔化”。其工作原理如下:金属粉末被均匀地铺成一层薄层。然后,一台强大的激光在粉末上移动,将其熔化在一起。在第一层完成后,新的粉末层被铺在上面,重复这一过程。激光逐层将粉末熔化成所需的形状。 3D打印能够制造出其他方法无法实现的形状。例如,2015年,GE公司为飞机发动机设计了燃料喷嘴,这种喷嘴只能通过金属3D打印制造。这种新型喷嘴是一个巨大的改进。其复杂的形状从打印机中出来时是一个轻质的整体部件。相比之下,之前的版本需要由20个独立部件组装而成,重量增加了25%。到目前为止,GE已经打印了数万个这样的燃料喷嘴,这表明金属3D打印可以在商业上取得成功。 金属3D打印的一个局限性在于它只能适用于少数几种金属。“高强度铝合金几乎不可能打印,”NIST的物理学家、论文的合著者Fan Zhang表示。“它们容易产生裂缝,这使得它们无法使用。” 为什么打印铝很难? 普通铝在大约700摄氏度的温度下熔化。3D打印机中的激光必须将温度提高到远高于这一温度:超过金属的沸点,即2470摄氏度。这会改变金属的许多特性,尤其是因为铝比其他金属加热和冷却得更快。 2017年,加州的HRL实验室和加州大学圣塔芭芭拉分校的一个研究小组发现了一种可以3D打印的高强度铝合金。他们发现,在铝粉中添加锆可以防止3D打印部件出现裂缝,从而制造出一种坚固的合金。 NIST的研究人员着手在原子层面上了解这种新的、可商业获得的3D打印铝-锆合金。“为了足够信任这种新金属,以便将其用于关键部件,如军用飞机零件,我们需要深入理解原子是如何组合在一起的,”Zhang表示。 NIST团队想知道是什么让这种金属如此坚固。事实证明,部分答案是准晶体。 准晶体如何使铝更强? 在金属中,完美的晶体结构较为脆弱。完美晶体的规律模式使原子更容易相互滑动。当这种情况发生时,金属会弯曲、拉伸或断裂。准晶体打破了铝晶体的规律模式,产生缺陷,从而使金属更加坚固。 识别准晶体的测量科学 当Iams从正确的角度观察这些晶体时,他发现它们具有五重旋转对称性。这意味着有五种方式可以绕一个轴旋转晶体,使其看起来相同。 “五重对称性非常罕见。这是可能发现准晶体的一个明显迹象,”Iams表示。“但在我们完全确信之前,必须确保测量是正确的。”为了确认他们发现的是一种准晶体,Iams必须在显微镜下小心地旋转晶体,并证明它还具有三重对称性和从两个不同角度观察到的二重对称性。 “现在我们有了这一发现,我认为它将为合金设计开辟一种新方法,”Zhang表示。“我们已经证明准晶体可以使铝更强。现在人们可能会尝试在未来合金中故意制造准晶体。”