《京瓷加入IMEC对先进硅太阳能电池产业联系程序技术项目》

  • 来源专题:可再生能源
  • 编译者: tracyludong
  • 发布时间:2014-11-05
  • 京瓷加入IMEC对先进硅太阳能电池产业联系程序技术项目。   当您共享他们...你的想法将会变大,  比利时鲁汶-2014 年 9 月 23 日。 (Investorideas.com 可再生能源股票新闻专线) 比利时电子学研究中心 IMEC和日本京瓷株式会社今天宣布京瓷----日本的高科技电子公司和制造商的光伏 (PV) 电池、 模块和系统的公司,已加入 imec 的产业联系程序项目。

相关报告
  • 《硅藻—太阳能电池技术突破的新途径》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-08-01
    • 硅藻,一种繁衍十分迅速的硅藻类植物,它们的无定型二氧化硅壳体以及独特的立体结构,可以使光在细胞内进行充分的光合作用。在人类发明硅基太阳能电池之前,自然界中的硅藻早已开始利用二氧化硅来收集太阳能。近年来,众多国内外研究人员就希望利用硅藻的光学特性来推动太阳能技术取得突破。 硅藻特殊结构发挥重要作用 藻类有200个门,10万多个种,大多数生活在海水中,能利用太阳能进行光合作用。藻类是世界上光能利用最成功、光能利用率最高的有机体,其能较少的反射太阳光,并通过网格毛孔捕获太阳能。 藻类高效利用阳光的最大秘密在于其外壳,其中单细胞的硅藻外壳是最佳模型。硅藻外壳是由结构极为复杂精密的二氧化硅组成10~50nm 的六边形微孔排列形成丝网状结构,复杂的结构能使射进的光线无法逃逸,这种纹饰繁密的藻壳不仅增强了硅藻的硬度和强度,使其具有能悬浮起来的机械性,而且提高了其运输营养物质和吸附、附着的生理功能,且阻止了有害物质进入,增强了光吸收率。 研究人员在很多具有分级多孔结构的生物材料中发现了天然的光子晶体效应,硅藻的特殊结构让它成为一种良好的光子晶体,能够大大提升光捕获效率,这种特性让硅藻在太阳能电池中发挥了重要的作用。 硅藻天然材料降低所需成本 硅藻这种微小生物对有机太阳能电池(相较于传统太阳能技术,这种技术成本更低)的设计有着独特的价值。因为设计这些电池的一个挑战是,它们需要非常薄的活性层(只有100到300纳米),而这限制了它们将光能转化为电能的效率。 解决这个问题的方案便是嵌入能够吸收与分散光的纳米结构来提高吸收水平,但这对于大规模生产来说太贵了。而这恰恰就是硅藻能够起作用的地方。经过数十亿年的适应性进化,它们已经尽可能优化了吸收光的能力。而且它们是自然界中最常见的浮游植物,这就意味着它们很便宜。硅藻在世界各地的海洋和淡水中非常普遍,因而成本非常低,所以它们成为改善光伏发电的理想选择。 硅藻有效提高能量转换效率 藻类外壳利用阳光的构筑是未来太阳能电池原材料和模型构筑的最佳供体。有机光伏太阳能电池具有由有机聚合物制成的活性层,这意味着它们比常规太阳能电池便宜,但它们的转换效率不太高,主要因为其有源层非常薄,通常需要小于300纳米,因此这限制了转换效率。 而利用硅藻的光学特性,将硅藻加入到染料敏化太阳能电池(是以低成本的纳米二氧化钛和光敏染料为主要原料,模拟自然界中植物利用太阳能进行光合作用,将太阳能转化为电能)的二氧化钛薄层后,能量转换效率是原转换效率的1.3-1.4倍(而把硅藻壳体加入到二氧化钛中烧结形成电池阳极,增加了光捕获和在电池中的散射性能,传统二氧化钛覆膜3遍的转换效率为3.8%,加入了硅藻壳体的二氧化钛转换效率可以达到5.26%)。 硅藻对于人类来说就是一个未开发的宝藏,除了在太阳能光伏材料上能有效的突破目前的能量转换效率,而且在其他领域还有着相同重要的应用。例如硅藻细胞代谢产生的多糖、蛋白质、色素、油脂等,使其在食品、医药、基因工程、液体燃料等多个领域都有极大的开发前景。 通过硅藻壳生产的微纳米二氧化硅是自然界独一无二、纯度极高的生物无机材料,也是最佳微纳生物平台材料,当然硅藻在养殖过程中也能吸收二氧化碳释放大量氧气,对环境有着巨大的贡献。
  • 《晶硅太阳能电池专利分布分析》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-09
    • 本文通过CNABS、DWPI数据库结合incopat,对全球、国内晶硅太阳能电池专利分布进行详尽分析。 全球专利分析 晶硅太阳能电池技术领域的专利申请年份分布趋势进行分析。从总的申请量上来看,2000年为分水岭,1990年-2000年年申请量在500-1000件之间,2001年-2006年在1500-1800件之间。之后,呈现井喷式增长,于2011年申请量达到峰值,4356件。2011年之后则线性减少。概括来讲,2008年之前整体平稳发展,2008-2011年井喷式线性增长,之后线性降低。 ●2008-2016年全球申请量的变化趋势一方面受市场影响。2008年受益于国内外光伏政策的利好影响,国内外光伏市场整体形势良好,国内各地大幅上马晶硅企业。2011-2012年期间欧美开始针对国内光伏行业进行反补贴反倾销的制裁以及晶硅价格的持续上涨,全球光伏市场迅速衰败。 ●另一方面,1999年单晶硅电池实验室效率达到峰值、2004年多晶硅电池实验室效率达到峰值。进过几年的发展,已逐渐实现高效率电池的产业化,晶硅电池的发展已进入成熟期、稳定期,其实也是进去了瓶颈期。 除美国IBM外,全球TOP5其余四家公司夏普、佳能、三菱和三洋从1990年开始已经进行相关的专利布局,开始时期年申请量在40件左右,其中,夏普、三菱、三洋3家公司的整体趋势较一致;佳能公司的发展重心在2004年之前,尤其是1998年之前其年申请量连续在第一位,2004年之后佳能公司则逐渐退出;IBM公司进去该领域时间相对较晚一些,在2001年年申请量在50件左右;从2011-2012年的申请量来看,除佳能外其余四家公司的年申请量均出现拐点,之后明显减少,以上与图10晶硅太阳能专利申请量的年度趋势基本一致。 中国的TOP3分别为常州天合光能、晶科、苏州阿特斯,它们在全球申请量排名分别在第10、16、18位。以上三家公司均在2009年左右开始有该领域的专利申请,较全球TOP5企业晚15年左右。并且,专利申请量的一大部分是集中在全球申请量开始下滑的2012年之后。 国内专利分析 国内专利申请在全球晶硅太阳能电池井喷式增长开始的2007-2008年开始强势进入。虽然,国内整体起步较晚,但时机把握较准确。国内外专利申请的峰值均出现在2011年,之后减少。国内申请因起步较晚,其减少幅度明显小于全球趋势。 天合光能、晶科能源、阿特斯阳光电力三家公司的申请量均在200件以上,远高于其它公司。申请量排名TOP10均为企业。 经统计 该领域专利申请以企业为主占到总数的77.5%, 而高校、科研单位仅占到总数的15.8%。 一方面,该领域研发需要投入巨量的资金。另一方面,受国家利好光伏政策的影响,大量资金融入该领域,国内各地大幅上马晶硅企业。申请量排名TOP10中,共7家江苏、浙江企业。江苏、浙江两省晶硅太阳能电池的专利申请量占到总数的30%以上,已成为国内该领域的研发、制造中心。 国内专利类型,实用新型的申请量占到总数的32%。中国专利申请中,86%申请人为来自中国。中国申请人的实用新型比例在37%,而国外申请人为1.4%。虽然中国晶硅太阳能电池领域的专利申请量排在全球的第3位,但整体的技术含量较低。 小结 晶硅太阳能电池研发起步较早,2007-2008年进入研究的高潮期,全球申请量开始呈现井喷式增长,中国在该时期强势加入。2011年专利申请量达到峰值,之后则断崖式下降。日本、美国、中国为主要申请国,全球专利申请量TOP3均来自日本。天合光能、晶科能源、阿特斯阳光电力为国内的TOP3,其排名位于全球前20。国内申请量排名TOP10中,共7家江苏、浙江企业,该区域已成为国内晶硅太阳能电池的研发、制造中心。虽然,中国晶硅太阳能电池领域的专利申请量排在全球的第3位,但实用新型的申请量占到总数的32%,整体的技术含量较低。