《Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production》

  • 来源专题:生物质生化转化信息监测
  • 编译者: giecinfo
  • 发布时间:2016-03-24
  • Like ester type biodiesel fuel, green diesel is a next generation transportation fuel emerging due to the need for a renewable replacement of internal combustion engine fuel, which is also fully compatible with existing automotive powertrain systems. Besides other limitations, the main obstacle for wider application of such renewable fuels is their relatively high production cost, depending mainly on the raw material cost and the application of more efficient processing technology. Green diesel and ester type biodiesel can be produced from waste vegetable oil by catalytic hydrogenation, homogeneous alkali catalysed transesterification and supercritical non-catalytic transesterification. Techno-economic analysis and the sensitivity analysis reveal that economics of these production technologies strongly depend on the process unit capacity and the cost of feedstock. Green diesel production by catalytic hydroprocessing located in a petroleum refinery appears to be the most cost effective option for unit capacity close to and above 200,000 tonnes/year. Conventional ester biodiesel process and non-catalytic ester biodiesel process under supercritical conditions are less profitable at specified capacity. Unit capacities of the investigated processes which are below 100,000 tonnes/year are likely to result in negative net present values after 10 years of project lifetime.

相关报告
  • 《Comparative analysis of effect of methanol and ethanol on Karanja biodiesel production and its optimisation》

    • 来源专题:广州能源研究所信息监测
    • 编译者:giecinfo
    • 发布时间:2016-04-14
    • Extensive use of fossil fuel resources especially petroleum has resulted in situation to look for alternative fuel sources. Biodiesel offers a good choice due to its renewable nature. In recent times, mainly methanol has been used in transesterification reaction for biodiesel production as it is derived from fossil sources, and biodiesel produced cannot be termed as completely renewable while other alcohols such as ethanol, being obtained from renewable sources such as potatoes, sugarcane, grains, corn and sorghum can be used for transesterification reaction. The aim of this work was to investigate the impact of ethanol on biodiesel production from Karanja oil and then optimise process variables for transesterification process. Further a comparison was done in optimised reaction parameters for methanolysis and ethanolysis. The result of experimental investigation shows that Karanja biodiesel yield of 91.05% was achieved with molar ratio of 10.44:1 for methanol using 1.22% w/w KOH as catalyst for 90.78 min at the temperature of 66.8 °C. On the other hand for, ethanolysis, optimised reaction conditions were, 8.42:1 molar ratio, 61.3 °C reaction temperature with 1.21% of catalyst and 120 min of reaction time to obtain yield of 77.4%.
  • 《University of Illinois researchers develop oil from sugarcane for biodiesel and aviation biofuel》

    • 来源专题:生物质生化转化信息监测
    • 编译者:giecinfo
    • 发布时间:2016-03-27
    • In Illinois, under the guidance of University of Illinois scientists, a research team changed the metabolism of sugarcane to transform sugars into oils or lipids, which can then be used to produce biodiesel. The sugarcane usually contains 0.05% of oil. In less than a year of this project initiation, the researchers successfully increased the oil production 20 times, up to roughly 1%. Currently the oil-cane plants generate 12% of oil, but the team aims to obtain 20%. The group has also introduced additional benefits to the oil cane plants which include more efficient photosynthesis and better cold tolerance. This will result in higher quantities of oil and higher biomass production. During their study, the researchers considered the technology, land area, and the associated expenses needed to convert oil-cane biomass into a sustainable biodiesel within different oil production situations, from 2% oil in the plant to 20%. This data was evaluated against soybean and standard sugarcane, which can be used to produce ethanol. A major benefit provided by oil-cane plants is that the plant’s remaining sugars can be changed into ethanol, offering a dual sources of fuel in one. The study also revealed that if oil-cane plants that contain 20% of oil in the stem are cultivated on under-used acres in the southeastern region of the US, over two-thirds of the nation’s use of jet fuel and diesel can possibly be replaced.