《价格与锂离子电池相当 印度公司研发快充电池》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-01-04
  • 据外媒报道,印度一家公司研发出一种新型电池,可以在15分钟内为电动汽车(EV)充满电,从而让终端客户能够负担得起电动汽车。该电池由印度孟买一家名为Gegadyne Energy的初创公司研发,该公司表示已经为该电池申请了专利,而且可能在2020年实现商业化。

      现在,电池成本占电动汽车成本的40%,为了让电动汽车更易被终端用户采用,电池成本下降的同时,充电时间也必须减少。

      目前,锂离子(Li)电池是电动汽车的主要动力来源。自2006年对电动汽车锂离子电池需求刚刚出现以来,到2016年,电动汽车锂离子电池需求占全球锂离子电池需求的50%。但是,此类电池需要花费很长时间充电,因此不利于电动汽车的推广。印度公司利用了一项新技术,可将超级电容器的快速充电能力与传统电池的高能量密度相结合,采用了静电荷存储和快速法拉第动力学反应的概念。

      Gegadyne Energy公司首席技术官Ameya Gadiwan表示,研究该电池的目的是取代现有电池,并且新电池将以圆柱形、软包和方形的形式提供。

      在锂离子电池中,能量是以电化学的形式存储,导致电池充电速度慢,电池的整体循环寿命短。相比之下,由研究人员设计的新款电池结合静电学和电化学工艺存储能量,使得电池的循环寿命比传统电池长近50倍,充电时间更短,充电速度也更快。

      Gadiwan表示:“目前,我们在研发经过第三方验证的电池原型和电池组,并将在未来12个月内在印度进行小批量生产。”同时还表示,该电池组的价格范围将与锂离子电池相当。该公司预计,随着生产规模的扩大,电池价格将进一步下降。该公司主要面对是电动汽车市场就,但是其电池也可用于其他消费设备、电信塔和固定储能系统等。

相关报告
  • 《两高”水性可充电电池问世 比锂离子电池更安全、更便宜》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-11-26
    • 锂离子电池以其高能量密度、高效率和低自放电率在便携式电子产品和电动汽车中占据主导地位,然而使用易燃的有机电解液所引起的严重安全问题阻碍了它的广泛应用。水性可充电电池由于使用了不可燃且价格低廉的水溶液(即用水作溶剂的溶液)作为电解液,不仅比锂离子电池更安全、成本更低,也更容易制备。但由于受到水分解电压的限制,目前水性可充电电池的能量密度远低于锂离子电池。   众所周知,电解液是化学电池、电解电容等使用的介质,为它们的正常工作提供离子,并保证工作中发生的化学反应是可逆的。所以提高水性可充电电池的实用性,改良水溶液电解液,提高其电压稳定窗口,已经成为目前研究的热点。   11月19日,南京工业大学宣布,该校吴宇平、付丽君教授团队设计了一种碱性/中性混合的水溶液电解液体系,研发出了高电压高能量密度水溶液混合电解液可充电电池。相关研究发表在国际化学领域顶级学术期刊《先进能源材料》上。   “水性可充电电池是指用水溶液作为电解液的可充电电池。”付丽君介绍道,“水溶液的理论分解电压是1.23伏,实际电池中由于存在过电势,分解电压可以达到1.5—2伏,但是很难超过2伏。而电池的能量密度与电池的电压是成正比的,即电压越高能量密度也越高,而电解液的电压窗口决定了电池可达到的最大电压,因此要提高水性可充电电池的电压,首先要提高水溶液电解液的电压稳定窗口。我们将碱性溶液与中性溶液组合成混合电解液,将电解液的电压稳定窗口提高到了3伏。”   “在水溶液电解液体系中,中性电解液的析氢电位高于碱性电解液,析氧电位低于酸性溶液,但是其电压窗口是3种溶液中最宽的。另外,碱性溶液和中性溶液的组合相对较为容易,而且这样的组合将大大拓宽电压稳定窗口。”论文第一作者、南京工业大学袁新海博士表示。   在这个工作中,研究团队使用了阳离子交换膜作为隔膜。“阳离子交换膜可以起到传输阳离子阻隔阴离子的作用,从而使电解液保持稳定的pH值。另外,在这个混合电解液体系中,阴、阳离子在正负极电解液中都是稳定存在的。因而保证了这个电解液体系的稳定性。”袁新海解释道,只有电解液保持稳定,才能使电解液的电压窗口保持稳定,才能保持电池体系的可逆性和稳定性。   “电解液的电压稳定窗口解决了,下一步就是选用合适的正负极材料构建高电压、高能量密度水性可充电电池。”付丽君介绍,他们在研究中注意到,锌是在碱性溶液中具有较负电位(相对于标准氢电极的电位为-1.216V)且具有较高比容量的负极材料,而锰酸锂是在中性电解液中具有较高氧化还原电位和较高比容量的正极材料,“因此将这两种材料结合起来,可以得到较高电压的水性可充电电池”。   该研究团队基于这种混合水溶液电解液的概念,还研发了一系列水溶液电池和水溶液电容器的工作,相关工作分别发表在《化学电化学》《化学通讯》《材料化学学报A》和《先进科学》上。
  • 《日企研发高性能锂金属电池,性能超锂离子电池》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-09-11
    • 据英国《金融时报》网站8月9日报道,从智能手机到无人机再到电动汽车,它们目前的能源来源是锂离子电池。但日本的初创企业正在努力创造可能成为下一个全球标准的高性能电池组。报道编译如下:   在日本港口城市横滨,一家公司的电话响个不停。   电话的另一端是美国和欧洲的汽车和无人机制造商。他们或是寻求尝试新电池,或是寻求与2014年成立于东京都立大学的初创企业3DOM公司合作。   一开始,这是一场独角戏。东京都立大学教授金村圣志曾是3DOM公司唯一的工程师。后来,来自松下等大型家电企业和汽车制造商的工程师被该公司的创新前景所吸引,在金村的领导下聚集在一起。   现在3DOM公司约有70名工程师,其中一半是在过去一年中加入的。   可充电电池是日本企业的强项,但近年来,这一产业已面临中国和韩国强劲对手的竞争。现在,日本在可充电电池产业继续作为全球大国的希望寄托于其工程师的能力。预计到2035年,该产业市值将超过2.7万亿日元(约合250亿美元)。   3DOM公司力争在2022年前实现锂金属电池的商业化。   这家初创企业表示,其锂金属电池电量是同等重量锂离子电池的两倍,性能已经得到证明。此外,该公司称,它的电池可以极大延长电动汽车的续航里程。   这家制造商希望其产品有朝一日能为飞行汽车提供动力。   虽然目前大多数锂离子电池负极使用的是碳材料,但3DOM公司使用的是锂金属,这种材料的优点是可以轻松提高电池的蓄电能力,但缺点是容易短路并起火。   起火是由于化学反应不均导致负极表面上生成枝状晶体的现象而发生的。3DOM公司开发了一种控制这种枝晶现象的分离器。该分离器的球孔整齐排列,直径为数百纳米(1纳米为1米的十亿分之一)。由于孔洞的大小统一,位置有序,因而离子统一流动,化学反应均匀。   这一分离器由聚酰胺制成。聚酰胺是一种耐热塑料,即使在400摄氏度的高温下也不会燃烧。目前,3DOM公司在美国西雅图郊区生产锂离子电池,并计划明年在美国再建一家工厂,为生产下一代电池做准备。   随着电动汽车和无人机的使用越来越广泛,锂离子电池的市场正在扩大,制造商们正在加紧努力开发下一代技术,让电池的容量更大、更安全、运行时间更长。   日本富士经济研究公司预计,今年全球下一代电池市场的规模将达到42亿日元,到2035年将达到2.7万亿日元。   未来最有前景的电池可能是全固态电池,这种电池可以比现在的电池更袖珍,而且可以迅速充电。日本丰田汽车工业公司和与美国特斯拉汽车公司合作运营电池设备的松下电器产业公司正在开发这一技术。