《南京大学揭示双层镍氧化物La3Ni2O7中的强电子关联和部分能隙》

  • 来源专题:关键原材料知识服务平台
  • 编译者: 费鹏飞
  • 发布时间:2025-04-11
  • 8月31日,南京大学在《Nature Communications》上发表题为“Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7”的论文,报道利用红外光谱技术测量并结合第一性原理计算,揭示了双层镍氧化物La3Ni2O7中存在强电子关联效应,并观测到密度波类型的部分能隙。

    自从上世纪90年代铜氧化物高温超导体被发现以来,人们便致力于寻找与铜氧化物超导体具有类似电子结构的材料,从而探索出新型高温超导体。由于镍和铜在元素周期表中相邻,因此镍氧化物成为探寻高温超导电性的重要材料体系。2023年,中山大学王猛教授团队发现双层镍氧化物La3Ni2O7单晶在压力下存在转变温度高达80 K的超导电性,引起了全世界超导领域的广泛关注。该材料在常压下不具有超导电性,但在T* ? 115 K附近表现出类似密度波的相变。研究La3Ni2O7的电子关联和相变前后的光学响应可以为理解该材料中的超导电性和其它竞争序的本质提供关键信息。

    研究团队利用红外光谱技术测量了La3Ni2O7的反射率谱并转换成为光电导谱,然后与第一性原理计算的结果进行对比。对比实验和理论计算的Drude谱重可以获得La3Ni2O7的电子动能比Kexp/Kband。他们发现实验光电导谱低频的Drude响应(以零能为中心的峰)明显弱于理论计算的结果,说明该材料中存在强电子关联效应。La3Ni2O7具有非常小的Kexp/Kband = 0.022,表明该材料中强电子关联效应使其处于Mott绝缘相的边缘。实验光电导谱可以用2个Drude分量和一系列Lorentz分量拟合,2个Drude分量源于穿过费米能级的多条由Ni-dx2-y2和Ni-dz2轨道形成的能带,Lorentz分量则源于电子的带间跃迁。其中一个Drude分量表现为费米液体行为,且其谱重不受T* ? 115 K相变的影响,而另一个Drude分量表现为非费米液体行为,并且在T* ? 115 K相变以下消失。这表明T* ? 115 K相变在费米面上打开了一个部分能隙,推测被移除的费米面处谱权重由电子关联较强的Ni-dz2轨道主导。

  • 原文来源:https://www.nature.com/articles/s41467-024-52001-5
相关报告
  • 《金属氧化物涂层使石墨烯在2017年的启蒙大会上更加多才多艺》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-07
    • 上个月,nanotechweb.org在英国的Ricoh Arena考文垂参加了科学和工业活动的薄膜和涂层技术。在介绍的研究中,有两个项目主要是用金属氧化物纳米管涂层单层石墨烯。英国克兰菲尔德大学的Adrianus Indrat Aria与剑桥大学和工艺创新中心(CPI)的合作者一起,应用氧化铝形成了一个复合屏障层,而英国伦敦帝国理工学院的Peter Petrov使用了钛酸锶的独特特性,制造了一个可调节的电容器。 理论上,石墨烯应该代表一个理想的超薄阻挡层,因为碳原子之间的孔隙比氦原子半径要小。然而,在实践中,晶体的边界和缺失的原子允许蒸汽通过材料渗透,而在飞机之间的弱范德瓦尔斯键意味着即使是叠加的多个石墨烯层也能被穿透。 艾瑞亚报告的解决方案是采用CVD形成的石墨烯单层,然后使用原子层沉积(ALD)涂上25 - 50nm厚的氧化铝层。由于材料具有很强的疏水性,在单层石墨烯上实现保形涂层是很困难的。然而,Aria发现,如果在CVD阶段后立即应用该涂层,则不需要额外的种子层或石墨烯的前功能化,而石墨烯基复合材料仍然是亲水的,或者如果延长停留时间用于达到最佳的饱和条件。所制备的纳米级复合材料适用于金属钝化、器件封装和透明膜层。 虽然一层石墨烯与50纳米氧化铝成双成对,但并没有达到像OLED封装那样的高灵敏度应用所要求的极端不透气性,但在达到必要的水汽传输速率之前,cvd - ald过程可以重复。使用这种技术制造的屏障层可以适当地展示低传输速率,厚度只有几十纳米,相比于目前在电视和智能手机上使用的毫米厚的层。 除了作为屏障材料的用途外,石墨烯当然是由于其optolectronic特性而对微电子的需求。同样,在多层堆叠设备中,也可以应用于涂层和分离活性石墨烯层。这意味着在制作和加工过程中,精细的石墨烯结构可以得到保护,而且它们的性能也会随着时间的推移而保持稳定。 不可能的外延 Petrov还报道了石墨烯上金属氧化物层的沉积,但在这种情况下,材料是钛酸锶(SrTiO3),目的是制造可调谐的电容器。研究首次揭示了石墨烯外延氧化薄膜在SrTiO3和MgO基板上的生长机理。 Petrov描述了在将CVD石墨烯层转移到SrTiO3基板上后,在顶部使用反射高能电子衍射(RHEED)辅助脉冲激光沉积技术,在顶部增加了50纳米厚的SrTiO3薄膜。高分辨率透射电子显微镜(HRTEM)和x射线衍射(XRD)使研究人员能够确定石墨烯上的SrTiO3纳米层与底层基片保持着一个外延的关系。单层石墨烯可防止氧化层与基体之间的电子相互作用,所以上纳米层的外延生长应该是不可能的。 Petrov解释道,答案在于石墨烯层的初始局部缺陷(如晶界),以及在SrTiO3基底上的石墨烯的范德瓦尔斯键的性质。这些缺陷就像桥柱点,使得SrTiO3的外延生长在石墨烯上。这种SrTiO3柱的生长也增加了界面的绝对应力,导致石墨烯层的部分折叠。对装配式电容器结构的电气测试表明,尽管有孔和多层贴片,石墨烯层的电气性能没有受到影响。 ——文章发布于2017年11月2日
  • 《南京大学在国际上首次实现大面积全钙钛矿叠层光伏组件的制备》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-05-31
    • 太阳能电池可将太阳能直接转变为电能,是一种重要的获取清洁能源的途径。 光伏发电成本依赖于太阳能电池的光电转换效率,有研究显示,转换效率每提升1%,发电成本可降低7%,但目前晶硅太阳能电池光电转换效率出现瓶颈,因此,研发制备更低成本、更高效率的太阳能电池是实现光伏发电平价上网的关键,也将为实现“双碳”目标提供重要科技支撑。 近日,南京大学现代工程与应用科学学院谭海仁教授课题组和英国牛津大学学者,运用涂布印刷、真空沉积等技术,在国际上首次实现了大面积全钙钛矿叠层光伏组件的制备,开辟了大面积钙钛矿叠层电池的量产化、商业化的全新路径。 经国际权威第三方测试机构认证,该组件稳定的光电转换效率高达21.7%,是目前已知的钙钛矿光伏组件的世界最高效率。该成绩被最新一期的《太阳电池世界纪录表》收录,相关成果近日刊发于国际权威学术期刊《科学》。 研究团队研发的全钙钛矿叠层光伏组件。课题组供图 制备工艺和结构不稳定制约钙钛矿叠层太阳能电池产业化 发展清洁、低成本的太阳能光伏发电,是实现“碳达峰碳中和”的重要途径与技术保障。2022年一季度,我国光伏发电量841亿千瓦时,同比增长22.2%。 “但是,随着技术的发展,传统的晶硅单结太阳能电池也遭遇了两个发展瓶颈,一是现有的工业生产能力已经逼近晶硅单结太阳能电池光电转化效率的极限,二是成本高、能耗大,将石英砂提炼为工业硅,制成单晶硅的过程,需要超过1000℃的高温,而钙钛矿太阳能电池的制备大约需要100℃。”作为此次研究的通讯作者,谭海仁坦言,生产成本更低、更节能的钙钛矿太阳能电池,被视为近年来光伏产业发展的新机遇,而钙钛矿叠层电池的结构优化和技术创新将加速光伏产业实现降本增效。 此前,谭海仁课题组提出了新型隧穿结构,突破了全钙钛矿叠层制备难题,发展了增强钙钛矿晶粒表面缺陷钝化的新方法,创造了全钙钛矿叠层电池光电转化效率26.4%的世界纪录,并在国际上首次超越了单结钙钛矿电池的最高认证效率,相关成果已发表于《自然》等国际权威学术期刊。 “虽然实验室小面积钙钛矿电池已取得很高的转换效率,但大面积钙钛矿光伏电池块的商业化进程依然面临诸多挑战。”谭海仁并不讳言,此前的研究虽然已经制备出1平方厘米左右的高效钙钛矿叠层电池,但量产化的制备方法和电池块中互连结构的长期稳定性是产业化的关键瓶颈。 增加铯含量,采用涂布印刷、真空沉积等技术让材料均匀成膜 要实现量产化制备,首先需要解决宽带隙钙钛矿薄膜大面积均匀制备的难题。 “宽带隙钙钛矿中含有较高的溴化物组分,其溶解度较低,溶剂选择空间较小,结晶调控不易,难以获得高质量均匀致密的薄膜,国际上对其量产化制备技术研究几乎是空白的。”谭海仁指出。 针对上述挑战,研究团队首次提出可量产化的全钙钛矿叠层电池制备方案,他们采用涂布印刷、真空沉积等制备技术替换实验室常用的旋涂成膜工艺,制备了20平方厘米的全钙钛矿叠层电池。 “此前我们使用的是旋涂工艺,即先把钙钛矿溶液涂抹在玻璃基底上,再用机器快速带动整块玻璃基底旋转,利用离心力让溶液分布在基底上形成薄膜,但这种方法会导致薄膜不均匀。此外,旋涂工艺的机器转速很快,所以很难带动大面积的玻璃基底旋转,这决定了它不适合量产钙钛矿太阳能电池。”谭海仁说。 为了让钙钛矿溶液能大面积均匀成膜,研究团队首先使用了刮刀涂布工艺。谭海仁解释,他们将溶液滴在透明的导电玻璃上,然后用刀片向前刮过去,这就在玻璃表面形成一层均匀的湿薄膜,用这种方法,他们完成了空穴传输层、钙钛矿层的刷涂,再用真空沉积的方法制备电子传输层和隧穿结构来保护第一层钙钛矿,然后再涂空穴传输层和第二层钙钛矿,真空蒸镀电子传输层和金属电极后,一个钙钛矿太阳能电池块框架就像搭积木一样“出炉”了。 仅搭好“房子”还不够,它还得“身材”匀称、结实。谭海仁说,最初制备钙钛矿叠层电池块时,因为溶液结晶时间久,薄膜还是不均匀,“后来想到,如果能像打印纸张一样,打印出来的瞬间墨水就干了,也许就能提高薄膜质量和生产效率。” 针对宽带隙钙钛矿在涂布过程中结晶调控难题,团队几经尝试后,将钙钛矿组分中A位阳离子的铯含量提高到35%,再结合气吹辅助结晶的刮涂方法加速溶液挥发,终于得到了一个结晶性最好且平整致密的宽带隙钙钛矿薄膜,这为量产化制备全钙钛矿叠层组件打下基础。 铯为何会成为“天选之子”让电池快速稳定成型?谭海仁介绍,“铯是无机离子,不易挥发,会提高器件的热稳定性,还能减小晶格应变,提升器件的光稳定性,也能降低结晶势垒,加快器件成核速率。” 制备特殊的电子传输层,既导电又避免不同材料互相“伤害” “从理论上说,当前单层钙钛矿太阳能电池的光电转化效率最高仅为约33%,而双层结构最高可达45%,发电效率越高,成本就越低。”长期的深入研究,让谭海仁发现,想实现钙钛矿电池内部结构“从一到二”的跨越,还要考虑器件材料间如何“和谐共处”。 “在串联型钙钛矿光伏组件中,每两个子电池的连接区存在复杂的互连结构。互连区内由于钙钛矿吸光层与背面金属电极间直接接触,钙钛矿中卤素离子会与电极中的金属相互扩散,导致金属材料被腐蚀、钙钛矿材料的电学性能下降,影响电池块的光电转换效率。”谭海仁说,为了克服这个难题,团队在钙钛矿吸光层与背面金属电极间,采用原子层沉积的方法,制备了一层二氧化锡电子传输层。 “二氧化锡是半导体材料,可以低温度环境生长,导电性比较好。不会影响互连区域中金属电极与前表面透明导电氧化物电极间的欧姆接触。同时,二氧化锡电子传输层可以保形沉积于子电池间的互联区域,阻隔了钙钛矿与金属间的直接接触。作为电池活性区域中的电子传输层,它还阻止空气对窄带隙钙钛矿的氧化,实现大气条件下组件的互联制备、测试和封装等操作过程。”谭海仁解释。 基于此创新性的组件结构设计,显著提升了组件的制备重复性、光伏性能以及稳定性。经日本电器安全和环境技术实验室测定,该全钙钛矿叠层太阳能电池块的光电转化效率21.7%,是目前报道钙钛矿光伏组件的世界最高效率,这一成绩被最新一期的《太阳电池世界纪录表》收录。 大面积钙钛矿叠层光伏组件展现的潜力激发了团队更大的斗志,谭海仁表示,如果要推动该技术的产业化,还要在印刷、制备钙钛矿的工艺上,做更多研发,制备20平方厘米墨水相对简单,但如果扩展到一平方米大小,还需要创新哪些技术条件,需要持续验证。