《Science | 通过抑制组织特异性油菜素类固醇提高水稻穗分枝和穗粒产量》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-03-13
  • 2024年3月8日,中国农业科学院作物科学研究所童红宁研究员领衔的研究团队在Science发表题为Enhancing rice panicle branching and grain yield through tissue-specific brassinosteroid inhibition的文章。该研究报道了对复粒稻多粒簇生形成机制的全面破译,发现控制簇生形成的基因编码植物激素油菜素甾醇(BR)的代谢基因,因复粒稻中该基因前存在复杂的染色体结构变异,导致该基因特异地在水稻穗分枝发育过程中被激活,并通过由BR水平改变诱发的一系列分子事件,促进了水稻穗分枝和穗粒数,最终导致产量增加。

    上世纪三十年代起,印度、美国、日本等世界各国的遗传学家陆续报道了一种独特的水稻,英文称之为“clustered-spikelet rice”(意为簇生小穗水稻),中文称之为“复粒稻”或“簇生稻”。与常见的水稻不同,复粒稻通常会有三粒种子簇生在一起,有学者形象地称之为“三粒奇”。在某些背景下,簇生会使得稻穗酷似麦穗,因此又有人称之为“麦颖稻”。在没有基因组序列的时代,复粒稻因其表型明显而独特,被遗传学家广泛用于构建染色体连锁群,并发现控制簇生的位点CL与控制水稻糯性的位点Wx在6号染色体存在连锁。Wx于1990年被克隆成为控制水稻籽粒品质的核心基因,而CL由于其控制的簇生性状具有增产的潜力,虽然引起了众多关注,但是只能将其定位在6号染色体的一个区间内。这种一致的定位区间暗示不同来源的复粒稻应由同一个位点控制,然而关于其遗传特性的相关报道存在诸多不一致的地方。距今已经报道了将近一百年,复粒稻控制基因以及小穗簇生发生的机理始终是未解之谜。

    复粒稻表型显著,但通过图位克隆始终无法定位到具体基因。考虑到图位克隆依赖于杂交群体的构建和后代性状与目的基因型的共分离,一是可能CL位点包含复杂的结构变异,导致一定区间内的连锁不平衡和后代偏分离,二是可能该性状易受到父母本基因组合的影响,导致后代个体表型与目的基因型的非绝对关联性分离,对精细定位造成了干扰。为此,研究人员另辟蹊径,以复粒稻为背景,通过化学诱变,从包含1万份诱变株系、16万份诱变单株的群体中筛选出2份不簇生的突变体株系,进而以复粒稻为对照,以不簇生的突变体为对象进行回交群体构建,结合重测序和关联分析,最终克隆到了目的基因。结果表明,一个被称为BRD3的BR代谢酶基因,在诱变过程中发生了突变,导致了簇生的消失。而对复粒稻基因组进行组装发现,BRD3前存在倒位、缺失、插入等复杂的染色体结构变异,激活了BRD3的表达,导致BR减少,是簇生发生的主要原因。因此CL实际上是指包含了复杂结构变异并激活BRD3表达的整个染色体区段。复粒稻簇生性状与结构变异紧密连锁,并且复粒稻表型与BR激素水平直接相关,解释了通过图位克隆无法成功克隆CL的原因;而以复粒稻为对照在同一背景下进行抑制子的筛选,避免了上述问题,为作物复杂性状的调控基因克隆提供了方法借鉴。

    BR最早发现于上世纪七十年代末,现已成为农业生产上广泛使用的一种植物生长调节剂。研究发现,BR显著控制着水稻的株高、叶夹角、籽粒大小等关键育种性状,但BR如何控制穗粒数并不清楚。严格的比较分析发现,复粒稻穗的二级分枝以及穗粒数显著增多。扫描电镜观察发现,其主要原因在于水稻穗分枝过程 “二级分枝分生组织”(SBM)向“小花分生组织”(SM)的转变延迟,从而产生了更多的SBM和SM,伴随着小穗柄变短,导致了簇生表型的发生。与此观察完全一致,研究人员通过多种技术手段,发现BRD3特异地在SBM激活表达,导致了该部位的BR含量减少,使得BR信号通路核心抑制子GSK2被激活,GSK2进而磷酸化转录因子OsMADS1并促使其更加稳定,后者又直接结合RCN2并促进其表达。RCN2作为拟南芥TFL1的同源基因,是调控SM身份性的重要因子,被激活后延迟了SBM向SM的转变,使得水稻具有更多的时间来进行分枝,从而促进了二级分枝,增加了穗粒数。穗分枝是一个复杂而有序的过程,伴随着一系列分生组织转化事件的发生,该研究是首次发现BR在控制水稻穗二级分枝过程中的重要调控作用。

    育种本质上是多性状的平衡优化过程,而穗粒数和籽粒大小之间的负相关是育种过程中难以克服的问题之一,一定程度上限制了当前水稻单产的进一步提升。BR对籽粒大小的促进作用极为显著,而该研究发现的BR对穗粒数的抑制作用,代表了一种全新的两个关键产量性状间的平衡机制。尤为重要的是,复粒稻对水稻种子大小和品质几乎毫无影响,但穗分枝和穗粒数显著增多,导致了产量相应地增加。免疫荧光和原位杂交等体内检测技术证实,GSK2、OsMADS1、RCN2三者和BRD3一样,均在SBM中被特异性地激活。因此,复粒稻中BR含量组织特异性地受到抑制,从而避免了BR缺陷对籽粒大小的负面影响。BR虽然被认为在农业生产与作物改良上具有重要应用潜力,但作为激素的功能多效性是BR应用的最大挑战之一,该研究发现空间特异性地控制激素含量可有效破解性状间的偶联,揭示了一种通过优化BR空间分布来避免激素负效应的新策略。

    研究团队进一步将CL导入到不同品种中,证实复粒稻簇生性状具有巨大的增产潜力,并且由于促进穗分枝机制上的不同,CL可以和著名的穗粒数控制基因Gn1a联合使用进一步增加产量。通过杂交选育将CL和Gn1a聚合后,水稻穗粒数最高可达600粒之多。此外,研究团队通过对簇生辣椒和非簇生辣椒,以及具有簇生花的蔷薇和非簇生花的玫瑰进行BR测量比较发现,和水稻一样,簇生与非簇生之间具有类似的BR含量变化。这一结果暗示,BR控制簇生的机制在大自然中可能具有普遍性。多年多点田间比较试验发现,由于CL通过控制激素水平发挥功能,而激素本质上具有微量高效并易受环境影响的特点,因此CL增产效果与背景材料中的激素水平以及种植条件密切相关。


相关报告
  • 《研究揭示水稻粒型和穗粒数协调发育的分子机制》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-01
    •         5月22日,The Plant Cell 正式发表中国科学院分子植物科学卓越创新中心/植物生理生态研究所林鸿宣研究组题为GRAIN SIZE AND NUMBER1 Negatively Regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to Coordinate the Trade-offbetween Grain Number per Panicle and Grain Size in Rice 的研究论文。经过多年努力,该研究发现并鉴定了控制水稻每穗粒数和粒型大小双重发育过程的关键基因GSN1,揭示了水稻每穗粒数和粒型大小协调发育的分子遗传机理。   水稻产量性状是由多基因控制的复杂数量性状,容易受到环境变化的影响。水稻产量主要由每株有效分蘖数、每穗粒数和粒重三个因素决定的。水稻的有效分蘖数直接决定了每株的穗数,每穗粒数则是由一级枝梗数目和二级枝梗数目以及枝梗上的小穗数目共同决定的,而水稻种子的粒长、粒宽、粒厚以及籽粒灌浆程度又直接决定了粒重。这三个内部要素之间相辅相成,共同决定水稻的产量。一般而言,影响水稻产量的这些内部要素之间并不是呈现出简单的累加效应,而是存在一定的负相关性,直接制约了水稻产量的提高。如何破除效应壁垒,突破各个要素之间的相互制约性,找到要素之间相互作用以及维持平衡的结点,成为当前水稻科学研究以及分子设计育种所面临的一个挑战。一般而言,植物在进化过程中,种子的大小和种子数量之间也存在着同样的负相关性,然而植物种子大小和种子数量决定的分子平衡机制却知之甚少。   在这项研究中,作者筛选出一个粒型增大、粒重增加,但是每穗粒数明显减少的突变体gsn1 (grain size and number 1),并且成功定位克隆了GSN1基因。该基因编码一个定位于细胞质的双特异性磷酸酶。在籼稻和粳稻背景中,分别抑制GSN1的表达可以使得水稻粒型增大、每穗粒数减少;增强GSN1的表达使得粒型减小、每穗粒数增加,这表明GSN1协调水稻每穗粒数和粒型大小双重发育过程。体内和体外研究表明,GSN1蛋白通过与OsMPK6互作,对其进行去磷酸化修饰,从而抑制OsMPK6的活性。进一步检测水稻幼穗中OsMPK6的磷酸化水平发现,在gsn1突变体中OsMPK6的磷酸化水平明显高于野生型,在GSN1受抑制的植株幼穗中OsMPK6的磷酸化水平也明显升高,而在GSN1过表达的植株幼穗中OsMPK6的磷酸化水平明显降低;此外,在OsMPK6RNAi、OsMKK4CRISPR和OsMKKK10CRISPR植株中OsMPK6的磷酸化水平也明显减弱,表明OsMPK6的磷酸化水平对于水稻穗形态建成至关重要。在野生型和gsn1背景中分别考察OsMPK6RNAi、OsMKK4CRISPR和OsMKKK10CRISPR的单突变体和双突变体表型发现:单突变体粒型减小、每穗粒数增多;双突变体可以回复gsn1突变体的表型。这些结果表明,GSN1通过对OsMPK6的去磷酸化,负调控OsMKKK10-OsMKK4-OsMPK6级联信号通路。该研究首次在水稻中鉴定了调控水稻穗型发育的OsMKKK10-OsMKK4-OsMPK6级联信号通路,并且证实了GSN1是该级联信号通路的负调控因子。研究结果还表明GSN1-MAPK分子模块通过整合下游的植物激素信号影响局部细胞特化和细胞分裂,从而精细调控水稻每穗粒数和粒型大小之间的协同发育。该研究对于理解禾本科作物花序形态建成以及可塑性的分子调控机理具有重要意义,为作物产量的遗传改良提供了新的分子模块和策略。   该工作主要由博士研究生郭韬在研究员林鸿宣和副研究员单军祥指导下完成。该研究获得了科技部、国家自然基金委和中国科学院等的资助。
  • 《中国科学家发现增加水稻穗粒数的新途径》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2019-12-09
    • 1月24日,《植物生物技术》(Plant Biotechnology Journal)在线发表了中国水稻研究所种质创新团队最新成果,该成果解析了水稻小穗内小花数目的发育调控机制,为水稻高产分子设计育种奠定了基础。他们为增加每穗粒数提供了两条新的途径和观点,即通过常规杂交或者基因编辑手段培育“多花小穗”水稻品种从而实现水稻增产。 每穗粒数是水稻产量构成的重要三要素之一。论文通讯作者、中国水稻研究所研究员钱前说,目前,在水稻上通过常规途径增加穗粒数和穗密度实现增产的方法有一定难度,因此研究人员迫切需要寻找一种增加穗粒数的新途径。 论文第一作者、中国水稻研究所副研究员任德勇介绍,前期研究发现,每穗粒数的形成有一个重要的影响因素,即小穗内的小花数,正常水稻一个小穗内只包含1朵花,形成1粒种子。该团队鉴定了一个新等位突变体fon4-7,该突变体使小穗除了产生正常的顶生小花外,还形成一个额外的或者侧生的小花。该研究揭示了FON4调控小穗分生组织的确定性,其突变导致小穗内小花数目不确定,获得形成多花小穗的潜力,进而形成多个种子。 该研究得到了国家自然科学基金委和浙江省自然科学基金委资助。 论文相关信息:https://doi.org/10.1111/pbi.13083