500年来,光学分辨率一直受到物理条件的限制。现在,一个EMPIR项目将这一理论推向了终极量子极限。
高科技部门越来越多地在纳米尺度上工作。作为一种测量工具,光学系统具有速度快、非侵入性和可靠性等优点,可以发挥很大的作用。
传统的基于光学的测量系统通常不具备所需的空间分辨率或灵敏度,限制了该领域的创新。
尽管经典光学测量是多么复杂或精密,但目前的最大分辨率与所用光的波长(λ, λ)有关。对于基于空气的测量,这相当于光波长的一半左右(~ 1/2 λ)。提高分辨率和看到更小细节的一种方法是使用波长很短的光——比如紫外线。然而,短波长的光只有很小的穿透深度(~ 100nm),并且由于紫外线与氧气相互作用,需要真空条件。此外,传统测量的另一个基本限制是直接来自光源的随机噪声,这可能会影响样品特征的最终识别,如形状、对光的透射或厚度。
现在已经完成的项目光-物质相互作用用于光学计量超越经典空间分辨率极限(17FUN01,成为)已经使用基于量子的技术来提高超过?λ极限的空间分辨率和对样品特征的灵敏度。
项目的影响力
向量子极限的分辨率
成像的主要障碍是所谓的“散点噪声”,这是一种与光本身的量子涨落基本相关的随机噪声。如果撞击探测器的光子数量过低,那么信号就无法与随机或随机噪声区分开来——因此图像等数据就无法分辨。
该项目利用双光子束将这些测量推向了终极量子极限。一束用于探测物体,而另一束用于测量随机但相同的噪声。从信号路径中减去噪声路径可以实现亚粒子噪声分辨率——该项目已经做到了这一点,并将这些测量推向了使用双光子光束的极限——具有迄今为止实现的每个光子的最佳灵敏度。参与研究的Ruo-Berchera博士评论说:“这可以应用于光敏或光反应生物或材料样品的增强想象。”本文描述了双光束在量子极限处光损耗的无偏估计。这是该项目同行评议的47篇论文中令人印象深刻的一篇,其中包括一篇发表在《Nature Communications》期刊上的关于光子纠缠和时间旅行的论文,以及一篇关于光学活性钻石缺陷中用于量子增强成像等领域的新型单光子发射器的论文。
散射到弱区之外
物体散射电磁辐射(如光)的方式可以用来检索未知物体的形状或物理特性。对于散射较弱的小粒子,数学上的玻恩级数可用来检索其形状或物理性质。当颗粒变大或强烈分散时,这种方法就开始失效。这种形式的“逆问题”——从原因(粒子从物体散射)中计算出结果(图像)——通常也太复杂或计算成本太高。
正如发表在《Physical Review Research》期刊上的文章所描述的那样,该项目通过使用pad<s:1>近似值解决了这个问题。
这种方法可以作为Born系列应用程序的重要构建块。
超过半λ限制的分辨率(超分辨率)
对尖端增强光致发光(TEPL)技术进行了改进,使其能够用于高分辨率成像,表明TEPL所获得的空间分辨率可以比激发波长(~ 1/25 λ)小20倍以上。
在INRiM项目中,意大利国家计量研究所开发了融合经典和量子方法的可能性,可以进一步改进显微镜技术,并在生物成像中具有潜在的重要应用。INRiM的目标是在不久的将来提供一个原理证明。
最后,为了支持用户使用与项目中开发的时域有限差分(FDTD)计算相关联的开源软件,已经公开提供。
该软件代码是一个严谨而强大的纳米级光学器件建模工具,适用于亚波长光栅散射的建模,并与有限元方法(FEM)建模结果进行了比较。关于对比的注释可以在这里找到。
在be项目中进行的工作将帮助欧洲光电子工业以改进的方式表征材料,例如纳米产品,并帮助开发新的新兴市场机会,特别是通过使用功能纳米光学材料提供的新机会。
该EMPIR项目由欧盟“地平线2020”研究与创新计划和EMPIR参与国共同资助。