《钙钛矿—硅叠层太阳能电池钝化难题攻克》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-09-05
  • 据最新一期《科学》杂志报道,一个国际光伏科研团队在钙钛矿—硅叠层太阳能电池产业化进程中取得重要进展。他们首次在工业主流的硅底电池纹理化结构上,实现了钙钛矿顶电池的高质量钝化处理,并将电池光电转换效率提升至33.1%。这一成果有望推动叠层电池从实验室走向大规模生产。

    由于硅太阳能电池的光电转换效率逐渐逼近其理论极限(29.4%),钙钛矿—硅叠层太阳能电池被认为是光伏领域的下一代重要技术。然而,实现钙钛矿—硅叠层太阳能电池产业化就要在沿用现有硅电池工艺的基础上攻克新的技术难题。硅电池底层通常采用大尺寸金字塔状纹理,以增加表面积并提升效率,但这一结构也让钙钛矿薄膜的沉积和表面钝化极为复杂。此前,科学界尚未在这种复杂结构上实现高质量的钝化处理。

    此次,沙特阿卜杜拉国王科技大学、德国弗赖堡大学和弗劳恩霍夫太阳能系统研究所组成的团队,在不平整的钙钛矿表面沉积1,3-二氨基丙烷二氢碘化物,实现了优异的钝化效果。实验表明,经过处理的叠层电池光电转换效率达到33.1%,开路电压达2.01伏。

    研究发现,钝化不仅改善了顶电池表面,还影响了整个钙钛矿层,从而提升了电导率和填充因子。这一改善源于钝化带来的深场效应。在硅太阳能电池中,钝化作用仅发生在靠近表面的区域,而在钙钛矿太阳能电池中,表面处理会影响整个吸收层,从而增强其整体性能。这一发现增加了人们对顶电池光电转换内部机制的理解,使科学家能进一步开发出更高效的叠层太阳能电池。

    团队指出,表面钝化是提升硅电池效率和稳定性的关键,如今在叠层电池中同样取得突破,这对光伏产业前景意义重大,有望加快新一代高效太阳能电池的商业化进程。

  • 原文来源:https://www.wedoany.com/innovation/19994.html
相关报告
  • 《Science:31.25%效率的钙钛矿/硅双结太阳能电池的界面钝化》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 导读 通过最大化每单位面积产生的电力,可以加快光伏(PV)的部署,因为现在PV系统的成本分布主要由系统平衡组件(如安装系统、布线、人力和逆变器)主导,而不是PV面板的成本。这种系统平衡成本与安装面积大致成比例,并且有利于具有高功率与面板面积比的PV技术。然而,结晶硅(C-Si)太阳能电池的最高功率转换效率(PCE)为26.8%,接近理论极限29.5%。在太阳照射条件下,克服这种PCE限制的唯一经验证方法是将几种互补的光活性材料(即多个结)组合在一个单一器件中(3)。在迄今为止报道的不同类型的多结设计中,c-Si与金属卤化物钙钛矿的组合在串联太阳能电池中一直是研究的焦点,因为它具有高PCE和低制造成本的潜力。 金属卤化物钙钛矿结合了多种关键特性,适用于有效的多结光伏,包括高吸收系数和尖锐的吸收边缘,具有长扩散长度的双极电荷传输,以及可调的组成能隙(Eg)。薄膜钙钛矿太阳能电池可以直接沉积在c-Si电池的正面,以降低热化损失并将可实现的PCE范围扩展到>30%。单片两端串联结构的性能潜力通过报告的在1平方厘米照射面积上高达33.7%的PCE得到了证明。迄今为止报告的大多数高效串联电池使用一个Si晶片,其前表面经过机械或化学抛光,或者具有比钙钛矿层厚度更小的适应性亚微米纹理(通常为500纳米至1毫米)。这种平面或纳米纹理的正面拓扑结构——通常通过蚀刻PV行业中常用的制备成几微米高度的金字塔——使得可以使用标准的溶液在基体上面沉积无针孔的钙钛矿薄膜。然而,这种修改以光学性能为代价,因为串联电池的正面是平坦的,并且当使用亚微米级的Si纹理时,因为非均匀性的溶液处理的使钙钛矿膜平坦化。因此,由于缺乏反弹效应,这些电池设计在串联的正极处呈现了更多的反射损失。总的来说,串联器件的正面具有金字塔纹理可以限制反射损失,因为它可以吸收邻近金字塔反射的光线,而Si晶片两侧都具有纹理则可以提高对红外光的吸收能力。 我们先前报道了一种混合的两步沉积方法,将热蒸发和旋转涂相结合,以使钙钛矿层覆盖在微米级Si金字塔上,从而在后表面和前表面都具有纹理的钙钛矿/c-Si串联电池中进行了覆盖。尽管这些串联电池由于前面的金字塔纹理而具有较高的光电流,但非辐射复合损失相当大。其中一个挑战是迄今为止大多数报告的顶表面钝化方法不能直接适用于微米级纹理,因为它们涉及从液体溶液中沉积纳米级有机层。并且,这些加工路线通常在这种表面纹理上产生非均匀(不完全)的涂层。 成果掠影 鉴于此,洛桑联邦理工学院微电子研究所Xin Yu Chin在之前的工作基础上,利用磷酸化合物在两个不同的角色中来钝化界面缺陷,设计了一种串联器件,将钙钛矿层覆盖在具有微米级金字塔纹理的硅底部电池上,以提高光电流。在处理序列中使用添加剂,调节钙钛矿的结晶过程,并减轻发生在钙钛矿顶部与电子选择性接触(富勒烯C60)之间的复合损失。我们展示了一个有效面积为1.17平方厘米的器件,实现了31.25%的认证功率转换效率。相关研究成果以“Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells”为题,发表在顶级期刊《Science》上。 核心创新点 本文的核心创新点是通过在钙钛矿/C-Si太阳能电池中采用具有微米级纹理的硅片、优化钙钛矿沉积过程并使用磷酸基团进行界面钝化,成功减轻了非辐射复合损失,实现了高达31.25%的电池转换效率。 成果启示 本文确定并减轻了发生在具有微米级纹理的硅片的钙钛矿/c-Si串联电池界面的非辐射复合损失,这是c-Si光伏中使用的工业标准。使用Me-4PACz减少了钙钛矿/HTL界面的电压损失,而在钙钛矿沉积序列中加入FBPAc减少了钙钛矿/C60 ETL界面的电压损失,并导致具有较大结晶领域的更有利的钙钛矿微观结构。通过XPS和SIMS成像,可以看到FBPAc存在于钙钛矿顶部表面,并通过其磷酸基团与钙钛矿中的铅缺陷发生配位作用。总的来说,将具有微米级纹理的c-Si、使用混合的两步法在此纹理上均匀沉积的1毫米厚钙钛矿吸收层以及吸收层两侧的磷酸基团结合起来,以改善界面钝化效果,实现了一个独立认证的31.25% PCE的串联电池。这些结果表明,如何将具有标准工业微米级纹理的c-Si太阳能电池升级,以将其PCE提高到>30%。 原文详情: 原文详情:Xin Yu Chin et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells.Science381,59-63(2023).DOI:10.1126/science.adg0091.
  • 《钙钛矿太阳能电池应重“叠层”》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-04-21
    • 近期,钙钛矿太阳能电池研究领域异常火热。刚刚过去不久的3月份,《科学》连续刊发4篇有关钙钛矿太阳能电池的研究论文,其中关于钙钛矿与硅的叠层太阳能电池的文章就有3篇。 钙钛矿太阳能电池的热点科学问题是什么?受关注的解决策略有哪些?近期发表的文章对热点科学问题有什么贡献?带着这些问题,4月15日,《中国科学报》专访了中国科学院院士、中国科学院化学研究所研究员李永舫。 “3篇采用叠层技术的文章值得重视,将来可能会进一步提升商品化硅太阳能电池的能量转化效率,但这一方向目前国内开展研究的不多。”李永舫指出,“国内研究者应该重视钙钛矿/硅叠层太阳能电池的研究,尤其是在现有硅太阳能电池生产线技术的基础上开发钙钛矿/硅叠层太阳能电池生产技术,同时需要研究叠加钙钛矿太阳能电池后对原来的硅太阳能电池产品稳定性和寿命的影响。” 《中国科学报》:为何钙钛矿太阳能电池这么受关注? 李永舫:钙钛矿太阳能电池是利用一种新兴的钙钛矿型的有机金属卤化物半导体作为吸光材料,进行光电转换的光伏器件。最近几年,钙钛矿太阳能电池得到快速发展,能量转化效率已经超过25%,并且具有低成本溶液加工的优势,拥有很大的应用潜力。 在潜在应用领域中,它的竞争对手是硅光伏电池。当今商用光伏市场份额主要被硅光伏电池占据,因为它可以稳定提供超过18%的组件能量转化效率、25年以上的使用寿命以及0.3美元/瓦的低成本,接近于电网平价的水平。 《中国科学报》:要与硅光伏电池竞争,钙钛矿太阳能电池在科学上还需要加强哪些工作? 李永舫:相比之下,新兴的钙钛矿太阳能电池仍然需要在各方面更加成熟,除了效率以外,还应关注稳定性、大面积器件的生产工艺、材料和器件制备的成本等等,才能真正形成产业竞争力。现在提升稳定性应当作为钙钛矿太阳能电池研究的重点,因为这是钙钛矿太阳能电池能否实现实际应用的关键。 《中国科学报》:近期的3篇《科学》论文有哪些特点?对上面提到的工作有什么帮助吗? 李永舫:我花了一些时间,仔细读了近期3篇《科学》上发表的前沿工作,都是针对钙钛矿光伏材料的另一种潜在应用方式:钙钛矿/硅叠层太阳能电池。叠层技术是进一步提高效率从而降低光伏发电成本的有效途径。 钙钛矿太阳能电池相比硅太阳能电池,能更有效地利用高能量的紫外和蓝绿可见光,而硅太阳能电池可以有效地利用钙钛矿材料无法吸收的红外光,因此,通过叠层方式组合这些高效的单电池,可以突破传统纯硅光伏电池的理论效率极限,进一步提升硅光伏电池的效率。 比如,3月6日,美国科罗拉多大学团队发表的这篇论文,获得了截至目前文献报道的钙钛矿/硅叠层太阳能电池27%的最高能量转化效率。这项工作重点围绕一直以来备受关注的问题:氯元素在混合钙钛矿中的功能与作用。研究人员利用一系列材料学表征手段进行了研究,并通过对钙钛矿组分以及氯的调节,加上电池制备集成工艺上的经验积累,得到了如此高的效率和较好的稳定性。 同日,加拿大多伦多大学、沙特阿拉伯阿卜杜拉国王科技大学等团队合作发表的论文,创新点集中在叠层电池连接技术的有效精简上,尤其是在复杂的纹理化硅电池表面制备叠层器件的连接技术。对于商品化的硅太阳能电池,为了提高太阳光的吸收和利用,在硅电池表面大多会制备成纹理化结构,因此该项研究工作对于与商品化的硅太阳能电池生产技术的接轨具有潜在的优势和实用性。 3月26日,美国国家可再生能源实验室和韩国首尔大学团队合作发表的论文,思路仍然集中在钙钛矿/硅叠层太阳能电池中的宽带隙钙钛矿材料本身的调控上,创新点是通过调节钙钛矿中阴离子添加剂工程,达到了26.7%的高效率,这也是世界领先的水平。 《中国科学报》:这些工作有哪些不足之处? 李永舫:这3篇文章都没有特别关注如何解决钙钛矿太阳能电池的稳定性问题,报道的器件效率也都源自实验室的小面积器件,还没有把握能将这种技术应用到商业化硅太阳能电池中。 除了效率以外,还应关注稳定性、与现有硅太阳能电池生产工艺的匹配、工艺精简程度、材料成本,还有大面积太阳能电池的效率是否可以同步提升等。 《中国科学报》:中国科研工作者有什么经验可以借鉴? 李永舫:这种钙钛矿/硅叠层太阳能电池是进一步提升硅太阳能电池效率的有效手段,它可以结合传统硅电池成熟的生产技术优势,在其基础上对能量转化效率作进一步提升。目前中国在整个钙钛矿太阳能电池领域处于前沿水平,有一些公司已经开展了大面积器件制备和应用研究。但是,国内有关硅和钙钛矿叠层太阳能电池方面的研究不多。 国内相关研究者应该重视钙钛矿/硅叠层太阳能电池的研究。我国硅太阳能电池的生产技术水平在国际上处于领先地位,商业化硅太阳能电池的产量占全球产量的50%以上,应该在现有硅太阳能电池生产线技术基础上开发钙钛矿/硅叠层太阳能电池的生产技术,进一步提升商品化硅太阳能电池的光电转换效率。同时需要研究和解决叠加钙钛矿电池后形成的叠层器件对硅太阳能电池稳定性和寿命的影响问题。 相关论文信息:https://doi.org/10.1126/science.aaz5074 https://doi.org/10.1126/science.aba3433 https://doi.org/10.1126/science.aaz3691