《韩国标准与科学研究院(KRISS)通过在饱和器中交替使用空气、氮气和甲烷进行霜点测量,以确定水蒸汽增强因子比及其不确定性》

  • 编译者: 张宇
  • 发布时间:2025-09-10
  • 近日,韩国标准与科学研究院(KRISS)的研究人员通过在饱和器中交替使用空气、氮气和甲烷进行霜点测量,以确定水蒸汽增强因子比及其不确定性。水汽增强因子(WVEFs)考虑了非理想气体行为,目前仅在有限范围内通过实验确定,通常依赖于在低温下的理论计算进行外推。本研究介绍了一种实验方法,用于确定不同载气之间的霜点差异以及高压湿度发生器与在大气压下工作的冷镜式湿度计(CMH)之间的水汽增强因子比。基于饱和器的霜点发生器以双压力模式运行,保持恒定的饱和器温度(Ts)和压力(Ps),同时交替使用输入气体(空气、N?和CH?)。冷镜式湿度计连续测量这些气体交替过程中的霜点温度,并在毫开尔文(mK)水平上检测差异。冷镜式湿度计的测量结果显示,在本研究的实验范围内(Ts = -70°C至20°C,Ps = 600 kPa至1000 kPa),N?的霜点温度随Ps的升高而线性超过空气。相比之下,CH?和空气的霜点温度在±10 mK范围内紧密对齐。通过实验和理论方法确定了N?和CH?的饱和器与湿度计之间的水汽增强因子比。实验值和理论值在考虑所有不确定因素评估的水汽增强因子比的不确定范围内一致。通过比较,使用实验确定的水汽增强因子比和气体之间的霜点差异来评估空气、N?和CH?的水汽增强因子的理论计算。(DOI:10.1088/1681-7575/adf444)
相关报告
  • 《韩国标准科学研究院(KRISS)研究团队开发出量子级精度的长度测量系统》

    • 编译者:李晓萌
    • 发布时间:2025-07-27
    • 近日,韩国标准科学研究院(KRISS)研究团队成功研发出具备量子物理学极限精度的长度测量系统。该系统不仅具备世界最高水平的精度,还能在户外环境中便捷运行,有望成为下一代长度测量的"基准"。 目前最精确的长度测量设备是作为1米(m)基准的"长度测量标准器"。由KRISS等世界各国计量标准代表机构运营的长度测量标准器,采用短波长激光干涉仪进行长度测量。短波长激光如同刻度密集的尺子,其波长分布极其均匀,可实现1~10纳米(纳米,十亿分之一米)级别的高精度测量。注:干涉仪(Interferometer):通过分析两束光相遇时产生的干涉图案(即两束光路径的相对变化),来精确测量目标物体距离或位移的装置。 然而,长度测量标准器的单次测量范围极为有限。这是由于短波长激光的光谱范围较窄所致——好比刻度密集却总长很短的尺子。若要测量超出激光波长范围的长度,就必须反复进行多次测量并累加结果。这不仅导致测量耗时冗长,还需配备稳定移动干涉仪的装置,存在显著的时空局限性。 相比之下,绝对长度测量系统虽精度稍逊,却能实现长距离单次测量。该系统通常从基准点向目标发射光脉冲,通过计算光波往返时间确定长度。其测量方式相对简单,设备可小型化,并能快速完成远距离测量,因而被广泛应用于工业现场。但现有绝对长度测量系统的精度极限仅为微米级(微米,百万分之一米),原因在于以现有技术难以将光传播时间测量精度提升至特定极限值以下。 KRISS长度形状测量团队成功利用"光学频率梳干涉仪",将绝对长度测量系统的精度提升至长度测量标准器的水平。研究团队创新性地将光学频率梳干涉仪应用于绝对长度测量系统。光学频率梳如同钢琴键盘般,由数千个等间距频率的光束组成。与传统干涉仪光源不同,光学频率梳兼具宽波长范围和高度均匀的波长分布特性,既能实现长距离单次测量,又能保证超高精度。 研究团队开发的"基于光学频率梳光谱干涉仪的绝对长度测量系统",兼具长度测量标准器的精度与绝对长度测量系统的便捷性。该系统精度达0.34纳米,不仅是现有设备的最高水平,更达到了量子物理学允许的极限精度。其25微秒(微秒,百万分之一秒)的测量速度,使系统具备足以在户外环境快速运行的便携性,有望显著提升韩国高端工业领域的长度测量精度水平。 研究团队计划持续推进后续研究,包括评估设备的测量不确定度、持续改进性能等,以期将本次开发的系统认证为下一代长度测量标准器。 KRISS长度形状测量组首席研究员表示:"AI半导体、量子技术等未来产业的竞争力,取决于能否精确测量和控制纳米级距离。此次成果将成为韩国跃升为下一代长度标准制定领军国家的重要契机。" 本次研究成果获得KRISS基础研究项目的支持,并已发表于光学领域国际顶级期刊《Laser & Photonics Reviews》(影响因子:10.0)六月刊(DOI:10.1002/lpor.202401995)。
  • 《美国国家标准与技术研究院(NIST)旨在通过减少扫描电子显微镜(SEM)的不确定度来增强其实用性》

    • 编译者:张宇
    • 发布时间:2025-05-30
    • 使用扫描电子显微镜(SEM)的电子束辅助成像技术来检测微型芯片上最微小的缺陷,长期以来一直是半导体行业健康发展的基石。但是,随着该行业不断将芯片组件小型化(对于计算机、植入式药物分配器、手机和其他新型设备的研发至关重要),对SEM图像中更详细信息的需求也在不断增加。 尽管扫描电子显微镜(SEM)精细的原子级分辨率几乎没有改进的余地,但美国国家标准与技术研究院(NIST)的研究人员在CHIPS测量计划的资助下,已开始一项多年研究,旨在减少基于SEM图像数据的测量结果中的不确定性。为此,NIST物理学家约翰·维亚鲁比亚(John Villarrubia)及其同事正在开展一系列实验,研究人员企图让SEM中的电子从不同的材料上散射。该研究团队希望通过将散射实验的结果与理论值进行比较,从而在SEM图像和所研究对象的特征之间建立更精确的联系。 扫描电子显微镜(SEM)通过用一束聚焦的电子束扫描样品表面来生成样品的原子级分辨率的图像。电子束与样品之间的相互作用会生成从样品中逸出的具有广泛能量范围的额外电子。其中能量最低的电子,称为次级电子,对于创建SEM图像至关重要,因为它们来自于样品表面或表面以下不远处,并且携带有关表面特征的大部分信息。能量更高的电子(能量超过50电子伏特的电子)对表面的敏感性较低,因为它们中的大多数由来自源光束的电子组成,这些电子因与材料深处的原子核碰撞而被反向散射。 确定究竟产生了多少次级电子,以及探测器实际记录了多少次级电子,是正确解读扫描电子显微镜(SEM)图像的关键。然而,精确计算这两个数字并非易事。 例如,从样品凹陷处产生的次级电子可能会被周围的材料重新吸收,而不是到达检测器。另一方面,从倾斜区域逸出的次级电子比水平区域更多。为了正确解读扫描电子显微镜(SEM)图像数据中表面特征的真实大小和形状,必须考虑这些影响。然而,物理学家们对电子散射过程,特别是在低能级下的散射,知之甚少,这就导致在对扫描电子显微镜(SEM)生成的图像数据进行解读时存在很大的不确定性。 “由于我们对电子散射的知识很欠缺,并且可能还存在一些错误认知,因此计量学家用来解读扫描电子显微镜(SEM)图像的数学模型也会存在这些问题,” Villarrubia说。 为了确保他们全面考虑了SEM图像中的所有次级电子因素,他与他的NIST合作者奥尔加·里德泽尔(Olga Ridzel)和格伦·霍兰德(Glenn Holland)设计了一个更简单但新颖的散射实验。在他们的研究中,将有一束电子撞击样品表面,产生次级和反向散射电子,就像扫描电子显微镜(SEM)的工作方式一样。 但是,该实验在两个重要方面与扫描电子显微镜(SEM)研究有所不同。首先,该样品表面被制造成完全平坦的状态,这使得分析散射电子的强度和能量变得更加容易。其次,样品将被放置在一个被称为延迟场分析仪(RFA)的装置中,该装置可以根据能量过滤反向散射电子和次级电子。通过调整滤波器,使得只有高于某一特定阈值能量的电子才能到达探测器,该操作可以高精度地测量次级电子的总数,以及特定能量范围内的次级电子数。 该团队计划使用在扫描电子显微镜(SEM)工作范围内的不同光束能量重复这些测量。研究人员还将对以不同角度倾斜的平坦表面的样品进行相同的测量,以评估改变斜率将如何影响收集到的电子数量。 然后,科学家们将把他们的测量结果与各种电子散射理论模型的预测结果进行比较。Villarrubia说,其中一种可能性是,现有的某个模型可能被证明是正确的。但他指出,更有可能的是,这种比较的结果“会证明即使是我们最好的物理模型依然是不准确”。最后,这些新数据将成为改进新的和现有的电子散射模型的基础数据集,以便该团队用这些新数据对电子散射实验的结果进行比较研究。 一旦研究人员确定了最佳模型,就可以将其应用于利用电子显微镜(SEM)的电子束扫描晶体管或其他具有不规则表面的芯片组件时发生的更复杂的散射过程的研究。 企业用户最终将可以确信他们所依赖的扫描电子显微镜(SEM)图像能够真正确定样品表面裂缝的实际大小、或者仅相当于十个氢原子大小的孔的宽度,乃至集成电路中逻辑门的形貌等等。