《Nature,5月11日,Real-time tracking of self-reported symptoms to predict potential COVID-19》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-05-12
  • Real-time tracking of self-reported symptoms to predict potential COVID-19

    Cristina Menni, Ana M. Valdes, Maxim B. Freidin, Carole H. Sudre, Long H. Nguyen, David A. Drew, Sajaysurya Ganesh, Thomas Varsavsky, M. Jorge Cardoso, Julia S. El-Sayed Moustafa, Alessia Visconti, Pirro Hysi, Ruth C. E. Bowyer, Massimo Mangino, Mario Falchi, Jonathan Wolf, Sebastien Ourselin, Andrew T. Chan, Claire J. Steves & Tim D. Spector

    Nature Medicine (2020)

    Abstract

    A total of 2,618,862 participants reported their potential symptoms of COVID-19 on a smartphone-based app. Among the 18,401 who had undergone a SARS-CoV-2 test, the proportion of participants who reported loss of smell and taste was higher in those with a positive test result (4,668 of 7,178 individuals; 65.03%) than in those with a negative test result (2,436 of 11,223 participants; 21.71%) (odds ratio = 6.74; 95% confidence interval = 6.31–7.21). A model combining symptoms to predict probable infection was applied to the data from all app users who reported symptoms (805,753) and predicted that 140,312 (17.42%) participants are likely to have COVID-19.

  • 原文来源:https://www.nature.com/articles/s41591-020-0916-2
相关报告
  • 《5月11日_实时跟踪自我报告的症状以预测潜在的COVID-19病例》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-12
    • 信息名称:实时跟踪自我报告的症状以预测潜在的COVID-19病例 1.时间:2020年5月11日 2.机构或团队:伦敦国王学院、美国马萨诸塞州总医院和哈佛医学院临床与转化流行病学小组等 3.事件概要: 伦敦国王学院等于5月11日在Nature Medicine上发表题为“Real-time tracking of self-reported symptoms to predict potential COVID-19”的文章。文章指出,共有2,618,862名参与者在一个基于智能手机的应用程序上报告了他们潜在的COVID-19症状。在接受过SARS-CoV-2检测的18,401人中,检测结果为阳性的参与者比检测结果为阴性的参与者报告嗅觉和味觉丧失所占的比例更高。研究人员还使用一个结合症状预测可能感染的模型分析所有报告症状的应用程序用户的数据(805,753人),并预测140,312名(17.42%)参与者很可能患有COVID-19。 4.附件: 原文链接: https://www.nature.com/articles/s41591-020-0916-2
  • 《Science,5月5日,Rapid implementation of mobile technology for real-time epidemiology of COVID-19》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-06
    • Rapid implementation of mobile technology for real-time epidemiology of COVID-19 David A. Drew1,*, Long H. Nguyen1,*, Claire J. Steves2,3, Cristina Menni2, Maxim Freydin2, Thomas Varsavsky4, Carole H. Sudre4, M. Jorge Cardoso4, Sebastien Ourselin4, Jonathan Wolf5, Tim D. Spector2,5,†, Andrew T. Chan1,6,†,‡, COPE Consortium§ See all authors and affiliations Science 05 May 2020: eabc0473 DOI: 10.1126/science.abc0473 Abstract The rapid pace of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (COVID-19) presents challenges to the robust collection of population-scale data to address this global health crisis. We established the COronavirus Pandemic Epidemiology (COPE) consortium to bring together scientists with expertise in big data research and epidemiology to develop a COVID-19 Symptom Tracker mobile application that we launched in the UK on March 24, 2020 and the US on March 29, 2020 garnering more than 2.8 million users as of May 2, 2020. This mobile application offers data on risk factors, herald symptoms, clinical outcomes, and geographical hot spots. This initiative offers critical proof-of-concept for the repurposing of existing approaches to enable rapidly scalable epidemiologic data collection and analysis which is critical for a data-driven response to this public health challenge.