《微生物所黄英研究团队揭示海洋放线菌有氧铁还原与多环芳烃降解的耦合及其机制》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-09-06
  •   近日,中国科学院微生物研究所黄英研究团队在 Journal of Hazardous Materials期刊发表论文,题为“Coupled Fe(III) reduction and phenanthrene degradation by marine-derived Kocuria oceani FXJ8.057 under aerobic condition”,揭示了在有氧条件下海洋放线菌的铁还原过程与多环芳烃污染物菲降解过程的耦合,并解析了相关分子机制。

      目前已报道的微生物铁还原过程主要发生在厌氧或有氧酸性(pH<4)环境。黄英团队前期研究发现部分放线菌能够在有氧且pH中性环境下还原含铁矿物及可溶性Fe(III)(Chemical Geology, 2019)。该团队近期研究进一步发现,放线菌在还原铁的过程中可快速降解多环芳烃等有机污染物。相比于只含有菲或Fe(III)的培养体系,在同时含有菲和Fe(III)的体系中,海洋放线菌Kocuria oceani FXJ8.057的菲降解率及Fe(III)还原率均显著提高。转录组和代谢产物分析结果表明,在菲和Fe(III)同时存在时,K. oceani FXJ8.057的菲降解途径和核黄素合成途径显著增强。通常情况下K. oceani FXJ8.057主要通过邻苯二甲酸途径降解菲,Fe(III)的存在激活了其另外两条菲降解途径,即联苯二甲酸途径和水杨酸途径。同时,K. oceani FXJ8.057分泌的核黄素可作为电子穿梭体,将菲降解产生的电子快速传递给胞外Fe (III)。Fe (III)还原形成的Fe(II)与细胞产生的H2O2发生胞外芬顿反应,生成的强氧化物·OH进一步增加了菲的氧化降解。另一方面,菌株分泌的铁载体和有机酸等有机配体可以和胞外Fe(II)形成复合物,延缓其再氧化。本研究为开发微生物技术去除污染水体中多环芳烃等有机物污染物提供了新思路。

      中国科学院微生物研究所博士研究生白冰冰为论文第一作者,黄英研究员和张利敏副研究员为本文共同通讯作者。本研究得到了国家自然科学基金和中国大洋矿产资源研究开发协会项目的支持。

      原文连接:https://www.sciencedirect.com/science/article/pii/S0304389423015200

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202309/t20230905_6872398.html
相关报告
  • 《中国科学院海洋研究所揭示深海硫氧化细菌单质硫形成与光能利用耦合新机制》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-04-02
    • 近日,国际分子生物学期刊The EMBO Journal(Nature index)刊发了题为“Blue light promotes zero-valent sulfur production in a deep-sea bacterium”的论文,报道了中国科学院海洋所孙超岷课题组在深海硫氧化细菌硫代谢和光能利用耦合机制方面的最新研究成果,为认知和评估微生物对深海硫元素循环的驱动作用和贡献提供了新角度,也为解释我国南海冷泉喷口广泛分布硫单质的成因提供了新思路。 在深海生命形式中,微生物类型最为多样,对元素生物地球化学循环发挥关键的驱动作用。在众多元素中,硫元素参与了许多重要生命活动,与多个元素循环通路相耦联,其生物地球化学循环过程一直是了解深海物质能量循环的关注点。单质硫作为硫元素循环过程的重要中间代谢产物,可为微生物暂时储存能量。在前期科考调查中,海洋所张鑫团队基于拉曼光谱观测到我国南海冷泉环境中单质硫含量丰富,但是形成原因不清晰。孙超岷课题组发现一株冷泉细菌Erythrobacter flavus 21-3能基于一条新型硫氧化途径将硫代硫酸钠转化成单质硫,该硫氧化途径在很多深海微生物中都存在(ISME J, 2020),在深海原位被证实也能真实发生(mBio, 2022),对深海硫元素循环有重要贡献。 一次偶然机会,研究人员发现蓝光可以显著提升该菌株产生单质硫的效率,这促使他们开展了更深入的探索性工作,并最终证实了一条蓝光促进深海硫氧化细菌形成单质硫的新通路。在该通路中,LOV组氨酸激酶LOV-1477是E. flavus 21-3光硫耦合通路中的重要蓝光感受器;LOV组氨酸激酶LOV-1477接收到外界蓝光刺激后,进一步激活二鸟苷酸环化酶DGC-2902,使其释放c-di-GMP调控下游通路;c-di-GMP进一步与含PilZ蛋白结构域的mPilZ-1753结合,增强其与硫代硫酸盐脱氢酶TsdA的相互作用,而后引起硫代硫酸盐代谢能力的增强,最终导致单质硫的产量增加。该团队还发现,在该菌株的光硫耦合通路中,硫代硫酸盐在TsdA的作用下转化为连四硫酸盐后,两个功能相同、可互为替代的硫氧化蛋白SoxB(SoxB-277和SoxB-285)能进一步将连四硫酸盐水解,驱动单质硫的生成。 作为一株来自深海冷泉的非光合细菌,E. flavus 21-3的单质硫产生为何会对光作出响应?要回答这个问题,首先需要明确深海是否有光以及深海微生物是否有利用光的能力。深海被认为是一个黑暗的、由化学能支撑维系的生态系统,但越来越多的证据表明深海存在不同形式的地质光(如热液区的热辐射光)或生物发光。相应地,孙超岷团队近年来陆续发现多种深海微生物能感知或利用光能。比如,热液非光合细菌正黄胞球菌可以通过光敏色素感知红外光(Environmental Microbiology, 2021);热液非光合细菌海源杆菌能借助形成的硫化镉纳米颗粒利用光能(Environmental Microbiology, 2021);冷泉非光合细菌海绵杆菌能感知蓝光(mSystems, 2022);冷泉绿弯菌新分支在实验室和深海原位环境均能进行光合作用(mBio, 2022)。上述这些成果充分证实了“深海有光且深海微生物具有利用光的能力”。那么,深海硫氧化细菌E. flavus 21-3的光响应能力会为它的生存带来哪些优势呢? 研究人员推测,由于单质硫可以用来储存能量,光硫耦合通路的存在会让E. flavus 21-3在蓝光出现时合成更多的单质硫,用于支持后期的生长代谢。该研究揭示了一种此前鲜有关注的深海微生物中光响应及硫代谢之间的耦联,对于后续探索深海微生物介导的元素循环与特殊能量代谢之间的耦合关系提供了新思路。值得一提的是,“科学”号科考船在整个研究过程中,无论是样品采集还是深海原位实验都发挥了不可替代的作用,彰显了大科学装置在深海研究中的重要性。 中国科学院海洋所博士研究生蔡瑞宁为第一作者,研究员孙超岷为通讯作者。研究得到基金委创新群体、基金委重大计划、山东省“十四五”重大项目等联合资助,同时也得到了中国科学院海洋研究所研究员张鑫及中国科学院南海海洋研究所研究员高贝乐团队的大力支持。     相关论文:Ruining Cai, Wanying He, Jing Zhang, Rui Liu, Ziyu Yin, Xin Zhang, Chaomin Sun*. Blue light promotes zero-valent sulfur production in a deep-sea bacterium. The EMBO Journal, 2023,e112514. DOI: 10.15252/embj.2022112514.    论文链接:https://www.embopress.org/doi/full/10.15252/embj.2022112514
  • 《稻田土壤铁-氮耦合的微生物机制取得重要进展》

    • 来源专题:农业立体污染防治
    • 编译者:金慧敏
    • 发布时间:2014-12-18
    •   稻田土壤是一种典型的人工湿地系统,其周期性的干湿交替导致了系列的氧化还原反应。由于稻田土壤的这一特性以及丰富的铁(Fe)含量,异化Fe(III)还原现象普遍存在于淹水稻田土壤中,并被认为可调控其他元素的生物地球化学过程。施氮(N)肥(尿素或氨)是人们为了维持稻田土壤肥力和增加水稻产量的一种重要农业管理措施。已有研究表明,在其他生境,如湿地和热带森林土壤中发现异化Fe(III)还原与N元素循环之间存在联系,然而人们对稻田土壤中微生物介导的异化Fe(III)还原与N元素循环相耦合的过程知之甚少。   鉴于稻田土壤在全球农业生产和生态环境功能中的突出地位,中科国学院生态环境研究中心朱永官课题组对我国稻田土壤中的Fe-N耦合过程进行了一系列研究。首先,他们选取我国南方第四纪红土母质发育的稻田土壤,通过室内泥浆厌氧培养手段,以13C-乙酸盐为底物,分别添加水铁矿和针铁矿作为唯一末端电子受体,采用基于rRNA的稳定性同位素探针(rRNA-SIP)结合基于16S rRNA的454高通量测序技术,研究了长期施N肥(尿素)对稻田土壤中依赖于乙酸盐同化的Fe(III)还原微生物群落的影响。他们首次揭示了长期施N肥能够促进稻田土壤中Fe(III)还原过程以及改变依赖于乙酸盐的Fe(III)还原细菌的群落结构。此外,他们还发现尽管不同形态的铁矿对Fe(III)还原细菌的类群具有选择性,水铁矿和针铁矿的添加均刺激了两种土壤中Geobacter属的增长,且长期施氮肥导致其增长幅度更大。这些结果暗示着长期施N肥在微生物介导的稻田土壤Fe的生物地球化学循环中的重要性,强调了元素生物地球化学循环之间复杂的相互作用。这一研究成果发表在自然出版集团的The ISME Journal(Ding et al., ISME J., 2014, DOI: 10.1038/ismej.2014.159)上。随后,他们以一个第四纪红土母质发育的时间序列稻田土壤为对象,采用基于15N-NH4+(15NH4+)的稳定性同位素示踪以及乙炔(C2H2)抑制技术,首次证明了稻田土壤中存在铁氨氧化过程,即在厌氧条件下,以Fe(III)为电子受体,Fe(III)被还原为Fe(II)的同时铵(NH4+)被氧化为氮气(N2),或亚硝酸盐(NO2–),或硝酸盐(NO3–)的过程(图1),其中,直接生成N2是稻田土壤中铁氨氧化过程的主要途径。此外,他们还发现水稻耕作可提高土壤微生物可还原Fe(III)水平,促进铁氨氧化反应,从而刺激土壤中N损失,通过估算发现铁氨氧化过程造成的N损失约占我国氨肥田间施用量的3.9–31%,推测此过程是稻田土壤N损失的潜在重要途径之一,可能影响到对陆地生态系统氮素损失的估算。这一研究成果发表在Environmental Science and Technology(Ding et al., Environ. Sci. Technol., 2014b, DOI: 10.1021/es503113s)上。