《英国国家物理实验室(NPL)的一项开创性研究揭示了Orbitrap质谱仪的噪声结构》

  • 来源专题:计量基标准与精密测量
  • 编译者: 张宇
  • 发布时间:2025-07-30
  • 近日,由国家物理实验室(NPL)主导的一项开创性研究在《Nature Communications》上发表(DOI:10.1038/s41467-025-61542-2),展示了有关 Orbitrap 质谱仪噪声结构的重要发现,Orbitrap质谱仪是分析复杂生物过程的关键工具。该研究解决了质谱中的噪声问题,噪声可能会影响检测极限,并在用于简化复杂光谱的计算方法中引入偏差。


    质谱仪通过根据质荷比来分离电离分子,在理解生物演化过程中发挥着至关重要的作用。Orbitrap质谱仪因其精确的质荷比测量能力在工业、学术界和医疗保健领域备受重视,因为Orbitrap质谱仪能够分辨出质量几乎相同的分子。然而,直到现在,这些仪器固有的噪声结构尚未得到充分认知。

    国家物理实验室(NPL)与迈克尔·R·基南博士(独立)、赛默飞世尔科技、弗朗西斯·克里克研究所、阿斯利康、IONTOF 公司和伦敦帝国理工学院合作,全面分析了Orbitrap的噪声结构。该研究引入了一种新的基于基本面的缩放方法,可以有效地分离并排序化学信息与噪声,解决了该领域长期存在的一个问题。此前,研究人员不得不依赖任意的缩放方法或根本不进行缩放,这导致数据解释过程中存在潜在的偏差。

    这项研究的成果对科学界具有重要意义。通过确定噪声如何影响检测极限,该研究为改进信号处理的工作铺平了道路,并允许对强度刻度进行校准。这一进步将显著提高从Orbitrap质谱仪所获得数据的准确性和可靠性,最终使得生物研究和医疗保健领域的各种应用从中受益。

    随着对Orbitrap质谱仪中噪声的研究不断深入,改进分析技术进步和更可靠的数据解析能力的不断增长,标志着质谱领域向前迈出了重要一步。

    国家物理实验室(NPL)高级研究员伊恩·吉尔摩(Ian Gilmore)评论道:“这项基础性研究是多年研究工作的结晶,需要一个由统计学、物理学和生物学专家组成的高度协作且跨学科的团队。我对团队成员深表感谢,并相信这些成果将为质谱学界带来持久的利益。”

    赛默飞世尔科技生命科学质谱研究总监亚历山大·马卡罗夫(Alexander Makarov)评论道:“这项真正的多学科研究为我们提供了一套先进的工具包,用于模拟Orbitrap光谱中的噪声,这将显著提高从质谱成像到同位素比测量等各领域广泛应用中质量分析的水平。”


  • 原文来源:https://www.npl.co.uk/news/new-study-on-orbitrap-mass-spectrometers
相关报告
  • 《英国国家物理实验室(NPL)在激光频率稳定方面取得开创性成果》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-06-20
    • 近日,英国国家物理实验室(NPL)发表了关于激光频率稳定的最新研究成果,NPL展示了通过采用前所未有的长光学参考腔和主动噪声抵消方案所实现的激光频率稳定方面的性能飞跃。这一进步具有超越现有技术水平的光学存储时间和主动消除杂散稳定噪声的显著特性。 将激光器的光学参考腔进行频率稳定控制是实现卓越稳定性的一种成熟方法。最近的研究显著降低了技术稳定噪声,使得激光的稳定性得到了显著提升。该团队开发了一种长度为68cm的光学参考腔,实现了创纪录的300微秒光学存储时间。从这个角度来看,68cm空腔两端的高反射率镜子之间的光线可以传播大约100公里,相当于英吉利海峡海底隧道长度的两倍。 除了腔体设计方面的进步外,研究人员还解决了杂散稳定噪声的挑战。他们成功地实施了一种技术用来主动消除称为残余幅度调制(RAM)的技术噪声源,该噪声源由稳定所需的相位调制技术产生。 这一创新性的工作为开发更稳定的激光器铺平了道路,这将显著提高光钟的性能,光钟是基于光跃迁的下一代原子钟。这项工作的影响涉及各个领域,包括国家计时、定位、导航、电信、激光源的特性分析和基础科学研究。 这些发现凸显了提升测量能力的重要性,并且可能会导致技术和科学研究的重大进步。 首席科学家Marco Schioppo表示:我们很高兴分享这些关于改进光学腔激光频率稳定性的研究成果,从而推动性能更优的激光器的开发。由于光学腔体稳定激光器是高精度时间和频率测量中无处不在的工具,因此我们的工作将对众多技术应用和科学产生广泛的积极影响。 助理科学家Adam L. Parke说:这是一个有趣的研究挑战,我很高兴能够为残余振幅调制的控制改进做出贡献,如果管理不当,这种失控的效果会严重影响频率稳定。 该论文被《Optics Letters》期刊选为“编辑精选”,这一荣誉旨在表彰具有卓越科学质量的文章,论文的详细内容可在此处查看 https://doi.org/10.1364/OL.560815
  • 《美国能源部橡树岭国家实验室(ORNL)的研究人员揭示了一种测量磁性材料高速波动的新方法》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-03-07
    • 近日,美国能源部橡树岭国家实验室(Oak Ridge National Laboratory)的研究人员在纳米尺度(尺寸为十亿分之一米)上,利用单量子比特传感,揭示了一种测量磁性材料高速波动的新方法。该方法将为量子材料的发展带来新变化,从而推进传统计算到新兴量子计算领域的技术发展。该研究成果以发表在《Nano Letters》期刊上。 许多材料都会经历相变,其特征是重要的基本属性随温度呈阶梯式变化。了解物质在临界转变温度附近的状态是开发利用独特物理特性的新材料和技术的关键。在这项研究中,该团队使用纳米级的量子传感器来测量磁性薄膜在相变状态附近的自旋波动。在室温下具有磁性的薄膜对于数据存储、传感器和电子设备至关重要,因为它们的磁性可以被精确地控制和操纵。 该团队在纳米相材料科学中心(ORNL的美国能源部科学办公室用户设施)使用了一种名为扫描氮空位中心显微镜的专用仪器。氮空位中心是金刚石中原子级的缺陷,其中氮原子取代了原来碳原子的位置,且相邻的碳原子缺失,从而形成了量子自旋态的特殊构型。在氮空位中心显微镜中,量子自旋态的缺陷能够对静态和动态磁场做出不同的反应,使研究人员能够在单个自旋态的水平上检测仪器的反馈信号,以确定纳米级结构的形态。 ORNL材料科学与技术部的研究人员Ben Lawrie说:“氮空位中心既充当量子比特(qubit),又是一个高度敏感的传感器,我们在薄膜上方移动它,以测量磁性和自旋波动的温度相关变化,这是任何其他方式都无法测量的。 当受自旋方向控制的材料的磁性不断改变方向而不是保持固定时,就会观察到自旋波动。该团队测量了薄膜在不同磁态之间经历相变时的自旋波动,这种相变是通过改变样品温度诱导的。 这些测量揭示了自旋波动的局部变化是如何在相变附近与全局变化联系在一起的。这种对相互作用自旋态的纳米级理解可能会催生出新的基于自旋的信息处理技术,并对广泛的量子材料类别有更深入的了解。 “自旋电子学的进步将提高数字存储和计算效率。与此同时,如果我们能学会控制自旋与其环境之间的交互,那么基于自旋的量子计算向大家展示的计算机仿真模拟的诱人前景将是以往任何传统计算架构都不可想象的。“Lawrie说。 这种类型的研究集合了ORNL在量子信息和凝聚态物理学方面的能力。Lawrie说:“如果我们能够利用最新的量子资源来获得对材料中经典态和量子态的新理解,这将有助于我们设计出在网络、传感和计算方面有实际应用的新型量子设备。 美国能源部基础能源科学计划资助了这项研究。 UT-Battelle作为美国能源部橡树岭国家实验室(ORNL)的非营利性管理和运营承包商。 授权为美国能源部(DOE)科学办公室管理ORNL。作为美国物理科学研究的最大单一支持者,科学办公室始终致力于应对我们这个时代最紧迫的挑战。